1560 扔人游戏

本文介绍了一款名为“扔人游戏”的算法问题,通过详细解释游戏规则和给出具体示例,利用位运算优化求解过程,旨在寻找角色能达到的最大位置编号。

1560 扔人游戏

Description

有一条射线端点在左边,把它分成单位长度的线段,每条线段的端点为一个位置。这些位置从1开始编号(端点开始),然后是2,3等等。位置之间的距离等于位置编号之差的绝对值。
小A,小B,小C分别站在射线的三个不同的位置上。他们想要到达编号尽可能大的位置上。一开始,他们三个人的位置是不一样的。
每个人可以执行以下每个操作最多一次:
  1. 移动一定的距离。
  2. 抓住另一个人并举到头顶。
  3. 把抓在手中的人扔出一定的距离。
每个人都有一定的移动范围。并且只能移动到一个没有人站的位置上。
如果一个人(p1)和另一个人(p2)的距离为1,并且p2没有被人抓住,p1也没有抓住别人,那么p1可以抓住p2.当p1抓住p2后,p2要来到p1的位置,而原来p2的位置变成空,即没有人站着。p1抓住p2后,p2不可以进行任何动作,p1不可以移动,但可以扔人。
每个人扔人时都有一定的范围。指的是他能把头顶上的人扔出的最远距离。当他的头顶有人时,他可以扔人。扔人时只能把人扔到一个没有人站着的位置上。
有一种特殊情况,当一个人抓住另一个人,而此时后者手中也抓住一个人。这时三个人就会形成一列站在同一个位置上。举个例子。小B举起小C,然后小A举起小B。这种情况下,小B和小C不能做任何动作。而小A可以把小B小C一起扔出。扔出后小B和小C会一起落在同一个位置,状态还是小B举着小C。
小A,小B,小C行动的顺序是任意的。但是每次只能有一个人行动。
现在我们的任务是,计算小A,小B,小C可以到达的位置中最大编号是多少。如果小A,小B,小C最后达到位置是pa,pb,pc的话,也就是使得max(pa,pb,pc)要最大。

样例解释:

一开始小A站在9,小B站在4,小C站在2
先让小A移动到6
然后小C移动到5并抓住小B
小A抓住C并扔到9
小C把小B扔到12
小B移动到15

Input

单组测试数据
第一行包含三个整数,分别表示小A的位置,移动的范围,和扔人的范围。
第二,第三行格式和第一行相同,分别表示小B和小C的对应数据。
三个初始位置是不同的,所有的输入的整数X都在[1,10](含)。

Output

共一行,三个人中可以达到最大位置的编号。

Input示例

9 3 3
4 3 1
2 3 3

Output示例

15

Solution

这是一道神奇的暴力题,讲道理我这个蒟蒻竟然一开始没看出来,幸亏看了题目标签和神犇代码(为什么有是看代码因为我太弱啦),这道题目我使用了(其实是神犇)用了位运算,简直是精妙无比,代码中用四位二进制数来表示状态,先来解释一发(0011)为初始状态:

0(没有意义,不过为了好看)
0(不可以抛出,因为手上还没有举起,若为1,则可抛出)
1(没有举起人,若为0,则已经进行举起)
1(没有移动过,若为1,则已经进行移动)

看懂这段二进制描述,就可以无压力的看接下来的代码

(其中flag[]表示当前这个[]可不可以操作,因为如果举起人或者被人家举起来,就不能操作了)

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int x[4],t[4],p[4],peo[4],w[4],flag[4]={3,3,3,3},ans;
int Abs(int x){
    if (x<0) return -x;
    return x;
}
int check(int nw){
    for (int i=1;i<=3;i++)
        if (Abs(x[i]-nw)==1) return 1;
    return 0;
}
void dfs(){
    for (int i=1;i<=3;i++)
        ans=max(ans,x[i]);
    for (int i=1;i<=3;i++){
        if (w[i]) continue;
        if (flag[i]&1 && !(flag[i]&4)){
            for (int j=1;j<=p[i];j++){
                x[i]+=j;flag[i]^=1;
                if (check(x[i]) || j==p[i]) dfs();
                x[i]-=j;
                x[i]-=j;
                if (check(x[i]) || j==p[i]) dfs();
                x[i]+=j;flag[i]^=1;
            }
        }
        if (flag[i]&2)
            for (int j=1;j<=3;j++)
                if (i!=j && !w[j] && t[i]>0)
                    if (Abs(x[i]-x[j])==1){
                        int pos=0;
                        w[j]=1;flag[i]^=2;flag[i]^=4;peo[i]=j;pos=x[j];x[j]=-j;
                        dfs();
                        flag[i]^=2;flag[i]^=4;x[j]=pos;w[j]=0;
                    }
        if (flag[i]&4)
            for (int j=1;j<=t[i];j++){
                int pos=0;
                w[peo[i]]=0;flag[i]^=4;pos=x[peo[i]];x[peo[i]]=x[i]+j;
                if (check(x[peo[i]]) || j==t[i]) dfs();
                x[peo[i]]-=j;
                x[peo[i]]-=j;
                if (check(x[peo[i]]) || j==t[i]) dfs();
                w[peo[i]]=1;flag[i]^=4;x[peo[i]]=pos;
            }
    }
}
int main(){
    for (int i=1;i<=3;i++)
        scanf("%d%d%d",&x[i],&p[i],&t[i]);
    dfs();
    printf("%d\n",ans);
}
内容概要:本文研究基于纳什博弈和交替方向乘子法(ADMM)的多微网主体能源共享模型,旨在实现多个微网之间的高效能源交互与优化调度。通过建立非合作博弈模型,各微网作为独立决策主体在满足自身需求的前提下追求成本最小化,利用ADMM算法实现分布式求解,确保隐私保护与计算效率。文中详细阐述了模型构建、博弈均衡分析、ADMM收敛性处理及仿真验证过程,并提供完整的Matlab代码实现,复现了SCI高水平论文的核心成果。; 适合群:具备一定电力系统优化背景、博弈论基础知识及Matlab编程能力的研究生、科研员或从事能源互联网、微电网调度相关工作的工程师;适合希望深入理解分布式优化算法在能源共享中应用的研究者。; 使用场景及目标:①掌握纳什博弈在多主体能源系统中的建模方法;②理解ADMM算法在分布式优化中的实现机制与收敛特性;③复现并拓展高水平SCI论文中的能源共享优化模型;④为微电网调度、能源市场机制设计等课题提供算法支持与代码参考。; 阅读建议:建议结合文档提供的Matlab代码逐段调试运行,深入理解变量设置、迭代流程与收敛判断逻辑;同时可延伸至其他分布式优化场景(如虚拟电厂、综合能源系统)进行模型迁移与改进。【SCI复现】基于纳什博弈和ADMM的多微网主体能源共享研究(Matlab代码实现)
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷数据进行分解,降低序列复杂度并提取不同频率特征;随后采用SSA优化LSSVM的关键参数,提升预测精度;最后将优化后的LSSVM用于各模态分量的预测并叠加得到最终负荷预测结果。该方法有效提高了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合群:具备一定电力系统背景和Matlab编程能力的高校研究生、科研【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现)员及从事能源预测相关工作的工程技术员;熟悉机器学习算法并希望将其应用于实际负荷预测问题的研究者。; 使用场景及目标:①解决传统负荷预测模型精度不足、易受噪声干扰的问题;②实现对多影响因素(如温度、历史负荷等)耦合作用下的电力负荷高精度预测;③为智能电网调度、能源管理及电力市场决策提供可靠的数据支撑; 阅读建议:建议读者结合提供的Matlab代码逐步复现整个预测流程,重点关注VMD参数设置、SSA优化机制与LSSVM建模环节,同时可尝试替换数据集或引入其他优化算法进行对比实验,以深入掌握该混合预测模型的设计思路与调参技巧。
内容概要:本文围绕无槽永磁电机的磁场解析问题展开,指出传统的原始场公式(RFF)在不同电机几何形状下可能引入显著误差,为此提出一种更为精确的解析解法,并通过Matlab代码实现验证。该方法旨在提高无槽永磁电机磁场计算的准确性,适用于需要高精度建模的研究与工程应用场景。文中还提及多个相关科研方向和技术实现,涵盖无机仿真控制、电力系统优化、路径规划、新能源系统调度、负荷与可再生能源预测等多个前沿领域,均配有Matlab或Python代码实现支持。; 适合群:具备一定电机理论基础和编程能力,从事电气工程、自动化、【无槽永磁电机解】磁场问题的直接场解,称为原始场公式(RFF),在整个无槽永磁电机领域中可能导致显著的误差,这些误差随着机器几何形状的变化而显著不同,提出了一种达到解析解(Matlab代码实现)新能源系统、智能控制等领域研究的科研员及研究生;熟悉Matlab/Simulink或Python的开发员。; 使用场景及目标:①改进无槽永磁电机磁场计算精度,替代存在误差的RFF方法;②为电机设计、控制系统仿真、高性能驱动开发提供可靠模型基础;③拓展至多物理场耦合分析与优化设计。; 阅读建议:建议结合提供的Matlab代码深入理解解析解的推导过程,对比RFF与新方法在不同几何参数下的误差表现,强化理论与实践结合;同时可参考文中列出的其他研究主题及相关代码资源,拓展科研思路与技术实现路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值