描述
题解
这个题我其实早就做过了,今天忽然发现 51Nod 上竟然也出了这道题,果然来源是 CF,所以就直接拿去年的代码提交了上去,那时候学 dfs 还是新手,初学,搞这道题真是煞费苦心,所以我的代码中注释详尽的狠,可能有的地方理解有些幼稚,但是也许有那么点可取之处,大家可以仔细看看代码,就是一个 dfs+位运算优化 。
这里的代码由于是我去年开春时写的,所以代码风格和我现在的有些迥异,按照我现在的习惯,代码中的这些数字我是会尽量避免的,一定会在开头 const 几个量的。
代码
#include <stdio.h>
#include <string.h>
#define TRUE 1
#define FALSE 0
#define max(a, b) a > b ? a : b
// 定义数组大小为4,从一开始,空出下标为0,方便计算
int x[4]; // 三个人的位置
int l[4]; // 三个人的机动性(可移动距离)
int t[4]; // 三个人的抛的距离
int ans = 0; // 经过操作后的最远距离,初始化为0
int w[4]; // 初始化为0,0表示可以进行操作,非零表示不可以
int p[4]; // 初始化为0,表示a[i]所举起的人
int a[4] = {3, 3, 3, 3};// 初始化为3,表人的状态,这里a对应的二进制为0011,后三位分别是三个动作:抛出,举起,移动。
// 0(无意义)0(不可抛出)1(未进行举起)1(未进行移动)。这道题中,a只有六个可能值:
// 0(0000)、1(0001)、2(0010)、3(0011)、4(0100)、5(0101),表示人的六种状态
int near(int s)
{
int i = 1;
for (; i <= 3; i++)
{
if (s == x[i] + 1 || s == x[i] - 1)
{
return TRUE;
}
}
return FALSE;
}
// dfs深度遍历
void dfs(int d)
{
int i = 1, j = 1, e = 0;
// 每次都取最远(大)的位置
for (; i <= 3; i++)
{
ans = max(ans, x[i]);
}
for (i = 1; i <= 3; i++)
{
// 是否可以进行操作
if (w[i])
{
continue;
}
// a[i] == 1 || a[i] == 3(未进行移动且不可抛出)
if ((a[i] & 1) && !(a[i] & 4))
{
for (j = 1; j <= l[i]; j++) // 移动
{
x[i] += j; // a[i]向前移动j
a[i] ^= 1; // 已移动
if (near(x[i]) || j == l[i]) // 如果a[i]移动后的位置旁边有人或者移动距离达到上限
{
dfs(d + 1);
}
x[i] -= j; // 归位
x[i] -= j; // a[i]向后移动j
if (near(x[i]) || j == l[i]) // 如果a[i]移动后的位置旁边有人或者移动距离达到上限
{
dfs(d + 1);
}
x[i] += j; // 归位
a[i] ^= 1; // 还原为未移动
}
}
// a[i] == 2 || a[i] == 3 || a[i] == 5(未进行举起)
if (a[i] & 2)
{
for (j = 1; j <= 3; j++) // 举起
{
if (i != j && !w[j] && t[i] > 0) // 是否可以进行操作
{
if (x[i] == x[j] + 1 || x[j] == x[i] + 1) // a[i]附近是否有人
{
w[j] = 1; // 即将举起(抛出)j,抛出前将j是否可操作标记变更为否
a[i] ^= 2; // 已举起
a[i] ^= 4; // 可抛出
p[i] = j; // 记录a[i]举起(抛出)了j
e = x[j]; // 记录a[j]的举起前位置
x[j] = -j; // a[j](被举起)的位置定为负数,只作用于下一层递归时的取最远位置的循环
dfs(d + 1);
x[j] = e; // 归位
w[j] = 0; // 还原为可以进行操作
a[i] ^= 2; // 还原为未举起
a[i] ^= 4; // 还原为不可抛出
}
}
}
}
// a[i] == 4 || a[i] == 5(可抛出)
if (a[i] & 4)
{
for (j = 1; j <= t[i]; j++) // 抛出
{
w[p[i]] = 0; // 变更a[j]为可操作(以下a[j]指a[i]所举起的人)
a[i] ^= 4; // 不可抛出
e = x[p[i]]; // 记录a[j]被举起前位置
x[p[i]] = x[i] + j; // 抛出a[j],并更新a[j]位置
if (near(x[p[i]]) || j == t[i]) // 如果a[j]被抛出后的位置旁边有人或者抛出距离达到上限
{
dfs(d + 1);
}
x[p[i]] -= j; // 归位
x[p[i]] -= j; // a[j]向后抛出j
if (near(x[p[i]]) || j == t[i]) // 如果a[j]被抛出后的位置旁边有人或者抛出距离达到上限
{
dfs(d + 1);
}
x[p[i]] = e; // 还原a[j]为未举起前的位置
a[i] ^= 4; // 还原a[j]为可抛出
w[p[i]] = 1; // 还原a[j]为不可操作
}
}
}
return ;
}
int main()
{
// 键入每个人的信息
for (int i = 1; i <= 3; i++)
{
scanf("%d %d %d", &x[i], &l[i], &t[i]);
}
// 深度优先遍历
dfs(1);
// 输出最远距离
printf("%d\n", ans);
return 0;
}