7-16 一元多项式求导 (20分)

设计函数求一元多项式的导数。
输入格式:

以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。
输出格式:

以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。
输入样例:

3 4 -5 2 6 1 -2 0

输出样例:

12 3 -10 1 6 0

(最早写的代码不太好,被我删了,这一版的好一些)

#include<stdio.h>
int main(void){
   
	int a[1000] = {
   0},b[1000] = {
   0}<
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 一元多项式是指对一个只有一个变量的多项式函数进行操作。具体来说,就是对多项式中的每一项分别,并将结果相加得到最终的数。 例如,对于多项式 f(x) = 3x^2 + 2x + 1,其数为 f'(x) = 6x + 2。 在的过程中,需要注意多项式中每一项的系数和指数都要乘以其对应的数,而常数项的数为。此外,还需要注意链式法则和乘法法则等规则的应用。 总之,一元多项式是微积分中的基本操作之一,对于理解和应用微积分具有重要意义。 ### 回答2: 一元多项式是高中数学中的重要部分,也是微积分的重要内容之一。在学习一元多项式时,我们需要掌握以下几个方面的知识。 首先,我们需要知道什么是一元多项式。一元多项式是指只含有一个变量的多项式,例如:$f(x) = x^5+x^3-2x+1$。 其次,我们需要掌握数的概念。数是一个函数在某一点的斜率,它描述了函数在该点附近的变化趋势。数的定义公式为:$$f'(x) = \lim\limits_{h \to 0} \frac{f(x+h)-f(x)}{h}$$其中,$h$表示$x$的增量。 然后,我们需要了解的基本公式。对于$x^n$,它的数为$nx^{n-1}$;对于$f(x)+g(x)$,它的数为$f'(x)+g'(x)$;对于$f(x)g(x)$,它的数为$f'(x)g(x)+f(x)g'(x)$。 最后,我们需要掌握的规则。对于多项式,我们可以将每一项分别,然后将它们相加得到整个多项式数。例如:$$\begin{aligned}f(x) &= x^5+x^3-2x+1 \\ f'(x) &= 5x^4+3x^2-2\end{aligned}$$ 需要注意的是,多项式的结果仍然是一个多项式,只是次数会降低一次。 总之,学习一元多项式需要牢固掌握多项式数、公式和规则等基本知识,通过大量的例题练习和思考,逐渐提高解问题的能力。 ### 回答3: 在学习高等数学中,我们经常会遇到多次函数与多项式函数,而其中一个重要的操作就是。在本题中,我们将介绍一元多项式,其中多项式可以看做一个函数,其函数便是对函数所得。接下来,我们将分几个方面介绍一元多项式。 一、多项式函数的定义及性质 在介绍多项式函数的之前,先要理解多项式函数的定义及其性质。多项式函数是指由常数和变量经过有限次加、减、乘、幂运算所得到的函数,例如:f(x) = a0 + a1x + a2x^2 + … + anx^n 中,a0,a1,a2,…,an 是常数,x 是自变量,n 是正整数。其中,每一项称为一项式,每项式中的常数和变量作为一个整体称为项系数。 多项式函数有几个重要的性质:首先,多项式函数是一个连续的函数,其在实数范围内均有定义。其次,多项式函数的数仍是一个多项式函数。最后,多项式函数在某个点处的数就是它在该点的斜率。 二、一元多项式的原理 一元多项式的原理是利用数的公式,对多项式函数中的每一项式分别,然后将每一项式的数相加,得出多项式数函数。具体而言,如果多项式的表达式为: P(x) = a0 + a1x + a2x^2 + … + anx^n 则它的数函数为: P'(x) = a1 + 2a2x + 3a3x^2 + … + nanx^(n-1) 其中,a1,a2,a3,…,an 是各项式的系数,同时也是数函数中各项式的系数。 三、一元多项式的基本规律 在多项式函数时,需要掌握数学家牛顿的除积法则和幂法则等相关的基本规律。它们的具体表述如下: 1、常数函数后为0,即:(C)'=0 2、幂函数后,指数减1,再乘上原来的系数,即:(x^n)' = n*x^(n-1) 3、和函数的数等于各式的数的和,即:(u + v)' = u' + v' 4、积函数的数等于两式分别后的积加上前者的数乘以后者,即:(uv)' = u'v + uv' 5、商函数的数等于后式的平方乘以前式的数减去前式的平方乘以后式的数,并除以后式的平方,即:(u/v)' = (u'v - uv')/v^2 四、一元多项式的举例 最后,我们来看一些实际的例子。 1、多项式 f(x) = 3x^4 - 2x^2 + 5 在 x = 1 时的数。 由一元多项式的原理可知,首先需要对每一项式分别,其次将各项式的数相加得到整个多项式数函数。 因此: f'(x) = 12x^3 - 4x 将 x = 1 代入上述式子中,则有: f'(1) = 12*1^3 - 4*1 = 8 因此,多项式 f(x) 在 x = 1 时的数为 8。 2、多项式 g(x) = 4x^3 - 2x^2 + x - 5 的数函数。 同样地,我们可以利用多项式的原理,对 g(x) 的每一项式分别,然后将各项式的数相加。 因此: g'(x) = 12x^2 - 4x + 1 具体来说, 4x^3 的数系数为 12x^2, -2x^2 的数系数为 -4x, x 的数系数为 1, -5 的数系数为 0。 综上所述,一元多项式是一种重要的数学运算,它在高等数学和其他学科中都扮演着重要的角色。因此,我们应该对其重要性有深刻的认识,并善于应用其基本原理及规律,以解决实际问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值