让DeepSeek扮演专家。若要优化 prompt,让回答知识更准确且符合领域专家水平,可从以下几个方面着手:
1精准定义问题
-
细化任务描述:
尽可能具体地阐述需求,避免模糊表述。比如,若想了解医学领域的知识,不要问 “什么是疾病”,而是具体到 “请详细解释阿尔茨海默病的发病机制、症状表现以及当前的治疗手段”。
-
明确专业背景:
在 prompt 中点明涉及的专业领域和特定背景。例如,在金融领域,“从宏观经济学和投资学的角度,分析当前利率上升对房地产市场和股票市场的影响”。
2提供充足背景信息
-
补充前置知识:
为模型提供必要的背景知识,帮助其更好地理解问题。例如在历史研究中,“在工业革命的大背景下,分析英国 19 世纪纺织业发展对社会结构产生的具体影响”。
-
给出相关数据:
如果问题涉及数据支撑,提供准确的数据信息。比如在分析市场趋势时,“已知过去五年智能手机市场的年增长率分别为 5%、6%、4%、3%、7%,请分析未来三年智能手机市场的发展趋势”。
3采用专业术语
-
运用领域行话:
在 prompt 中使用该领域的专业术语和规范表述。例如在计算机科学领域,“请解释深度学习中卷积神经网络(CNN)的架构原理以及其在图像识别任务中的应用优势”。
-
遵循行业规范:
确保使用的术语和概念符合该领域的行业标准和规范。
4借鉴专家提问方式
-
参考权威文献:
研究领域内权威专家的著作、论文等,学习他们提出问题和探讨问题的方式。比如在生物学研究中,参考顶尖学术期刊上的研究问题,将其提问方式运用到自己的 prompt 中。
-
模仿专家交流:
观察专家在学术会议、研讨会等场合的交流提问,模仿他们的语言风格和提问逻辑。
5进行多次优化迭代
-
测试不同表述:
设计多个不同表述的 prompt,然后对比模型的回答,选择效果最佳的一个。例如,对于同一个问题,可以尝试不同的措辞、语序等,观察回答的准确性和专业性。
-
根据回答调整:
根据模型的回答情况,对 prompt 进行调整和优化。如果回答不够准确或全面,分析原因并修改 prompt,再次进行测试。
6引导回答结构
-
要求结构化输出:
在 prompt 中明确要求模型以特定的结构进行回答,如分点阐述、按照时间顺序、因果关系等。例如,“请按照起因、经过、结果的顺序,分析这次全球性金融危机的形成机制”。
-
设置回答要点:
给出回答中需要包含的要点,让模型围绕这些要点进行回答。比如,“分析人工智能在医疗领域的应用时,请从诊断、治疗、研究三个方面进行阐述”。