DeepSeek|如何让DeepSeek回答更像领域专家?

让DeepSeek扮演专家。若要优化 prompt,让回答知识更准确且符合领域专家水平,可从以下几个方面着手:

1精准定义问题

  • 细化任务描述

    尽可能具体地阐述需求,避免模糊表述。比如,若想了解医学领域的知识,不要问 “什么是疾病”,而是具体到 “请详细解释阿尔茨海默病的发病机制、症状表现以及当前的治疗手段”。

  • 明确专业背景

    在 prompt 中点明涉及的专业领域和特定背景。例如,在金融领域,“从宏观经济学和投资学的角度,分析当前利率上升对房地产市场和股票市场的影响”。

2提供充足背景信息

  • 补充前置知识

    为模型提供必要的背景知识,帮助其更好地理解问题。例如在历史研究中,“在工业革命的大背景下,分析英国 19 世纪纺织业发展对社会结构产生的具体影响”。

  • 给出相关数据

    如果问题涉及数据支撑,提供准确的数据信息。比如在分析市场趋势时,“已知过去五年智能手机市场的年增长率分别为 5%、6%、4%、3%、7%,请分析未来三年智能手机市场的发展趋势”。

3采用专业术语

  • 运用领域行话

    在 prompt 中使用该领域的专业术语和规范表述。例如在计算机科学领域,“请解释深度学习中卷积神经网络(CNN)的架构原理以及其在图像识别任务中的应用优势”。

  • 遵循行业规范

    确保使用的术语和概念符合该领域的行业标准和规范。

4借鉴专家提问方式

  • 参考权威文献

    研究领域内权威专家的著作、论文等,学习他们提出问题和探讨问题的方式。比如在生物学研究中,参考顶尖学术期刊上的研究问题,将其提问方式运用到自己的 prompt 中。

  • 模仿专家交流

    观察专家在学术会议、研讨会等场合的交流提问,模仿他们的语言风格和提问逻辑。

5进行多次优化迭代

  • 测试不同表述

    设计多个不同表述的 prompt,然后对比模型的回答,选择效果最佳的一个。例如,对于同一个问题,可以尝试不同的措辞、语序等,观察回答的准确性和专业性。

  • 根据回答调整

    根据模型的回答情况,对 prompt 进行调整和优化。如果回答不够准确或全面,分析原因并修改 prompt,再次进行测试。

6引导回答结构

  • 要求结构化输出

    在 prompt 中明确要求模型以特定的结构进行回答,如分点阐述、按照时间顺序、因果关系等。例如,“请按照起因、经过、结果的顺序,分析这次全球性金融危机的形成机制”。

  • 设置回答要点

    给出回答中需要包含的要点,让模型围绕这些要点进行回答。比如,“分析人工智能在医疗领域的应用时,请从诊断、治疗、研究三个方面进行阐述”。

图片

如何基于DeepSeek大模型进行微调?

prompt和completion有什么作用?

如何评估prompt和completion的效果?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alex_StarSky

你的鼓励是创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值