
GPT实战系列
文章平均质量分 91
Alex_StarSky
一花一世界。
展开
-
DeepSeek|如何让DeepSeek回答更像领域专家?
细化任务描述尽可能具体地阐述需求,避免模糊表述。比如,若想了解医学领域的知识,不要问 “什么是疾病”,而是具体到 “请详细解释阿尔茨海默病的发病机制、症状表现以及当前的治疗手段”。明确专业背景在 prompt 中点明涉及的专业领域和特定背景。例如,在金融领域,“从宏观经济学和投资学的角度,分析当前利率上升对房地产市场和股票市场的影响”。原创 2025-03-22 07:15:00 · 1406 阅读 · 0 评论 -
DeepSeek|优化prompt设计有哪些方法?
比如在进行历史事件解读时,可提供事件发生的时间、地点、主要人物等信息,“请解读 1919 年发生在北京的五四运动,包括其起因、经过和影响”。例如,若你想让模型生成一篇文章,就不要只写 “写一篇文章”,而应明确具体要求,像 “写一篇 500 字左右、以春节为主题、风格温馨且适合在社交媒体分享的文章”。比如在生成代码时,指定代码的编程语言、缩进规范等,“用 Python 语言编写一个计算斐波那契数列的函数,使用四个空格进行缩进”。例如,“请分析这个问题” 中的 “这个问题” 指代不明,应明确指出具体问题。原创 2025-03-20 21:24:08 · 533 阅读 · 0 评论 -
GPT实战系列-构建本地知识库RAG的LLM Agent
本文将介绍如何设计和实现具有LLM能力的聊天机器人。它作为一个有记性的聊天机器人,需管理聊天记录。需给它连接内部知识,通过某种形式的,或简称 RAG,来获取浅的,特定领域的,很有用知识,使聊天机器人更加强大。原创 2024-03-21 22:40:35 · 2308 阅读 · 0 评论 -
GPT实战系列-智谱GLM-4的模型调用
本文介绍如何调用智谱GLM4的API,用Python语言调用GLM-4 模型实现大模型应用原创 2024-03-19 20:59:53 · 1890 阅读 · 0 评论 -
GPT实战系列-LangChain的Tools函数转换器
LangChain是一个Python框架,可以使用LLMs构建应用程序。它与各种模块连接,使与LLM和提示管理,一切变得简单。原创 2024-03-20 17:30:00 · 1489 阅读 · 0 评论 -
GPT实战系列-LangChain的Prompt提示模版构建
Prompt模版是用于生成语言模型提示的预定义模版。模板可能包括说明、小样本示例,和特定的上下文和问题(适合于特定的任务)。LangChain提供创建和使用提示模板的工具,其实也没有做太多的工作,就是字符串格式化操作差不多。模版与模型无关,使其适应在不同的语言模型中重复使用。原创 2024-03-18 23:09:24 · 1626 阅读 · 0 评论 -
GPT实战系列-LangChain的OutPutParser解析器
LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。很多时候语言模型输出文本,满足不了你的需求,你可能想得到结构化信息,而不仅仅是一段信息。这就是输出解析器的意义。输出解析器是把语言模型的响应结构化原创 2024-03-15 21:29:32 · 1545 阅读 · 0 评论 -
GPT实战系列-如何让LangChain的Agent选择工具
LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。原创 2024-03-14 23:42:09 · 1966 阅读 · 0 评论 -
GPT实战系列-LangChain构建自定义Agent
LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。原创 2024-03-13 19:58:01 · 2019 阅读 · 0 评论 -
GPT实战系列-LangChain实现简单链
LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。原创 2024-03-11 22:18:36 · 1456 阅读 · 0 评论 -
GPT实战系列-使用LangChain内部工具
随着OpenAI的GPT-4这样的大型语言模型(LLMs)已经风靡全球,现在让它们自动执行各种任务,如回答问题、翻译语言、分析文本等。LLMs是在交互上真正体验到像“人工智能”。如何管理这些模块呢?LangChain在这方面发挥重要作用。LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。原创 2024-03-10 22:38:12 · 1314 阅读 · 0 评论 -
GPT实战系列-LangChain如何构建基通义千问的多工具链
随着OpenAI的GPT-4这样的大型语言模型(LLMs)已经风靡全球,现在让它们自动执行各种任务,如回答问题、翻译语言、分析文本等。LLMs是在交互上真正体验到像“人工智能”。LangChain在这方面发挥重要作用。LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。原创 2024-03-09 23:47:11 · 2014 阅读 · 1 评论 -
GPT实战系列-构建多参数的自定义LangChain工具
LangChain是一个Python框架,可以使用LLMs构建应用程序。它与各种模块连接,使与LLM和提示管理,一切变得简单。原创 2024-03-08 23:42:41 · 2152 阅读 · 1 评论 -
GPT实战系列-通过Basetool构建自定义LangChain工具方法
LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。原创 2024-03-08 23:26:17 · 2076 阅读 · 1 评论 -
GPT实战系列-一种构建LangChain自定义Tool工具的简单方法
随着OpenAI的GPT-4这样的大型语言模型(LLMs)已经风靡全球,现在让它们自动执行各种任务,如回答问题、翻译语言、分析文本等。LLMs是在交互上真正体验到像“人工智能”。LangChain在这方面发挥重要作用。LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。原创 2024-03-07 20:04:37 · 1929 阅读 · 0 评论 -
GPT实战系列-搭建LangChain流程简单应用
LangChain是一个Python框架,让我们可以使用LLMs构建应用程序。它与各种模型连接,使与LLM和提示管理有关的一切变得简单。原创 2024-03-04 10:25:22 · 1424 阅读 · 0 评论 -
GPT实战系列-实战Qwen通义千问在Cuda 12+24G部署方案
通义千问 Qwen测试在显卡内存24G,排除了Qwen14非量化方案Qwen-14B-Chat,只有 Qwen-7B-Chat,Qwen-7B-Chat-Int4,Qwen-14B-Chat-Int4 模型可用。原创 2024-01-16 22:28:21 · 4039 阅读 · 1 评论 -
GPT实战系列-简单聊聊LangChain搭建本地知识库准备
利用一些文档中的信息来构建答案,回答特定文档中的问题。首先需要把文本转换为文本向量,即自然语言处理常常要用的Embedding技术,Text2Vector。原创 2024-01-14 22:35:40 · 1944 阅读 · 1 评论 -
经典算法-粒子群算法的python实现
粒子群算法的思想源于对鸟群觅食行为的研究,鸟群通过集体的信息共享使群体找到最优的目的地。原创 2024-01-13 21:36:34 · 1079 阅读 · 0 评论 -
经典算法-模拟退火算法求解旅行商问题TSP
旅行商问题(Traveling Salesman Problem, TSP)是组合优化中的经典问题。简单地说,一个旅行商需要访问N个城市,并返回到出发城市,问题是找到最短的可能路线,使得每个城市只被访问一次。由于TSP是一个NP-hard问题,找到其精确解决方案是非常计算密集型的,特别是对于大规模的城市集。因此,我们需要一种可以在合理的时间内得到近似解的方法。模拟退火算法(Simulated Annealing, SA)是一个非常受欢迎的随机搜索技术,用于求解优化问题。原创 2024-01-12 22:13:52 · 1040 阅读 · 0 评论 -
数据分析-Pandas如何转换产生新列
数据如何计算并转换到新的列?时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。此处选择巴黎、伦敦欧洲城市空气质量监测NO2数据作为样例。原创 2024-01-12 20:42:14 · 1274 阅读 · 0 评论 -
经典算法-模拟退火算法的python实现
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却。加温时,固体内部粒子随温度升高变为无序状,内能增大,而缓慢冷却时粒子又逐渐趋有序。从理论上讲,如果冷却过程足够缓慢,那么冷却中任一温度时固体都能达到热平衡,而冷却到低温时将达到这一低温下的内能最小状态。原创 2024-01-11 23:18:49 · 1358 阅读 · 0 评论 -
GPT实战系列-让CodeGeeX2帮你写代码和注释
CodeGeeX是一款基于大模型的全能的智能编程助手。它可以实现代码的生成与补全、自动添加注释、代码翻译以及智能问答等功能,能够帮助开发者显著提高工作效率。CodeGeeX支持主流的编程语言,并适配多种主流IDE。原创 2024-01-10 23:34:56 · 1811 阅读 · 0 评论 -
经典算法-遗传算法的解走迷宫例子
本文是遗传算法的一个示例,利用遗传算法来走迷宫,如果能从起点顺利走到终点,就能获胜。迷宫图中,绿点为迷宫起点,橙色点为迷宫终点。原创 2024-01-09 21:57:11 · 772 阅读 · 0 评论 -
GPT实战系列-ChatGLM3管理工具的API接口
用ChatGLM的工具可以实现很多查询接口和执行命令,外部工具该如何配置使用?如何联合它们实现大模型查询助手功能?例如调用工具实现股票信息查询,网络天气查询等助手功能。如何实现调用工具的逻辑。原创 2024-01-08 22:33:31 · 1353 阅读 · 0 评论 -
经典算法-遗传算法的python实现
本文分享经典的算法:遗传算法受到生物进化理论启发,模拟生物种群的进化过程。遗传算法是一类基于生物进化理论的优化算法,通过模拟生物进化的过程,通过选择、交叉和变异等操作,不断优化解决问题。遗传规划算法(Genetic Programming,简称GP)作为进化算法的一种,通过演化生成程序或模型来解决问题。使用Python语言实现一个遗传算法。原创 2024-01-08 16:32:08 · 1845 阅读 · 0 评论 -
GPT实战系列-简单聊聊LangChain
LangChain 由几个主要模块组成,针对每个模块,文档提供一些入门示例、指南、参考文档和概念指南。后面基于LangChain做一些好玩的实验和有意思的测试吧。LangChain 可以支持的一些常见用途。原创 2024-01-07 22:24:59 · 1761 阅读 · 1 评论 -
GPT实战系列-LangChain + ChatGLM3构建天气查询助手
用ChatGLM的工具可以实现很多查询接口和执行命令,而LangChain是很热的大模型应用框架。如何联合它们实现大模型查询助手功能?例如调用工具实现网络天气查询助手功能。原创 2024-01-07 21:38:11 · 1803 阅读 · 0 评论 -
大模型查询工具助手之股票免费查询接口
一个免费查询股票信息的API接口。股票研究的实践中需要查询股票市场接口,百度搜索大多链接都要收费或者注册。原创 2024-01-06 23:06:33 · 1108 阅读 · 0 评论 -
GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手
GPT实战系列-如何使用大模型查询助手功能?例如调用工具实现网络查询助手功能。目前只有 ChatGLM3-6B 模型支持工具调用,而 ChatGLM3-6B-Base 和 ChatGLM3-6B-32K 模型不支持。原创 2024-01-06 22:38:29 · 1752 阅读 · 0 评论 -
GPT实战系列-大话LLM大模型训练
GPT模型生成文本序列是通过预测下一个 token 的方式来实现。大模型的参数多,上亿的参数,T, P级别的海量训练语料数据,训练模型的过程基本都遵循分阶段模式。原创 2023-12-18 06:30:00 · 1210 阅读 · 1 评论 -
GPT实战系列-探究GPT等大模型的文本生成
ChatGLM,Baichuan,GPT等大模型的文本生成,有什么特点?功能如何扩展?原创 2023-12-17 13:14:35 · 539 阅读 · 2 评论 -
GPT实战系列-Baichuan2等大模型的计算精度与量化
不做特别处理,深度学习默认参数精度为浮点32位精度(FP32)。大模型参数庞大,10-1000B级别,如果不注意优化,既耗费大量的显卡资源,也耗费大量的训练时间。有的地方32位精度没有太大必要,这就是浮点精度和量化的动力来源。大模型的训练和预测过程中,如何加快训练速度?如何降低显存占用?有哪些简单的方法?原创 2023-12-01 19:22:12 · 1298 阅读 · 2 评论 -
GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF
什么预训练?什么是pretraining?什么是Base model,什么是SFT model?CPT和ChatGPT是一样的吗?以GPT为例,LLM训练流程分为4个阶段:预训练,监督微调训练,奖励评价训练,强化学习。分别生成预训练模型(Base model,基础模型),如GPT3,GPT4;监督精调模型SFT模型,RM奖励评价模型,和最后的生成模型,如ChatGPT。原创 2023-11-26 20:12:39 · 2494 阅读 · 0 评论 -
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)
P-Tuning v2 将 ChatGLM2-6B 模型需要微调的参数量,减少到原来的 0.1%,再通过模型量化、Gradient Checkpoint 等方法,最低只需要 7GB 显存即可运行。本文试图解读训练环节中,代码的背后含义,配置符合自己要求的,通过命令行配置参数(sh脚本,把配置参数指定到模型,数据和训练的参数类中。原创 2023-11-18 16:24:41 · 956 阅读 · 1 评论 -
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)
P-Tuning v2 将 ChatGLM2-6B 模型需要微调的参数量,减少到原来的 0.1%,再通过模型量化、Gradient Checkpoint 等方法,最低只需要 7GB 显存即可运行。p-tuning训练过程函数分为五个部分,这五部分到底做了啥?原创 2023-11-17 22:10:21 · 1273 阅读 · 2 评论 -
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
本地部署大模型,那么如何用小显存部署和使用也是非常重要,让AI的价值应用并延伸到更广泛的领域。本实战专栏继续关注小而美的大模型,将评估一系列的开源模型,尤其关注国产大模型,重点在于可私有化、轻量化部署,比如推理所需的GPU资源控制在24G显存内,2张Titan XP,或1080 Ti。原创 2023-11-02 18:23:51 · 17824 阅读 · 7 评论 -
GPT实战系列-ChatGLM2模型的微调训练参数解读
ChatGLM-6B是开源的文本生成式对话模型,基于General Language Model(GLM)框架,具有62亿参数,FP16 半精度下,ChatGLM-6B 需要 13GB 左右的显存进行推理。文章对P-Tuning的训练参数进行详细解读,有助于微调、训练的顺利开展。原创 2023-10-31 23:32:21 · 5344 阅读 · 2 评论 -
GPT实战系列-如何用自己数据微调ChatGLM2模型训练
本文面向的读者对象是如何使用自己的数据集,微调训练ChatGLM2大语言模型。将阐述数据如何组织,样例数据的获取。训练脚本,代码如何根据自己情况进行调整,以及常见的问题解决方法和思路。原创 2023-10-29 20:44:42 · 1853 阅读 · 2 评论 -
GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案
本实战专栏将评估一系列的开源模型,尤其关注国产大模型,重点在于可私有化、轻量化部署,比如ChatGLM2模型是清华研究团队领衔开发的ChatGLM2-6B 是开源中英双语对话模型ChatGLM-6B的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2更强大的性能。原创 2023-10-14 15:38:02 · 2815 阅读 · 1 评论