算法运行时间分析

原文地址:
http://blog.csdn.net/richardysteven/article/details/5872672
http://clarkluo2004.blog.163.com/blog/static/32973801200845115213422/
https://www.zybang.com/question/fab0af9cc88bed1775b267cb4b98e73e.html


算 法 运 行 时 间说明
1大部分程序的大部分指令之执行一次,或者最多几次。如果一个程序的所有指令都具有这样的性质,我们说这个程序的执行时间是常数。
logN如果一个程序的运行时间是对数级的,则随着N的增大程序会渐渐慢下来,如果一个程序将一个大的问题分解成一系列更小的问题,每一步都将问题的规模缩减成几分之一,一般就会出现这样的运行时间函数。在我们所关心的范围内,可以认为运行时间小于一个大的常数。对数的基数会影响这个常数,但改变不会太大:当N=1000时,如果基数是10,logN等于3;如果基数是2,logN约等于10.当N=100000,logN只是前值的两倍。当N时原来的两倍,logN只增长了一个常数因子:仅当从N增长到N平方时,logN才会增长到原来的两倍。
N如果程序的运行时间的线性的,很可能是这样的情况:对每个输入的元素都做了少量的处理。当N=1000000时,运行时间大概也就是这个数值;当N增长到原来的两倍时,运行时间大概也增长到原来的两倍。如果一个算法必须处理N个输入(或者产生N个输出),那么这种情况是最优的。
NlogN如果某个算法将问题分解成更小的子问题,独立地解决各个子问题,最后将结果综合起来,运行时间一般就是NlogN。我们找不到一个更好的形容,就暂且将这样的算法运行时间叫做NlogN。当N=1000000时,NlogN大约是20000000。当N增长到原来的两倍,运行时间超过原来的两倍,但超过不是太多。
N 的平方如果一个算法的运行时间是二次的(quadratic),那么它一般只能用于一些规模较小的问题。这样的运行时间通常存在于需要处理每一对输入数据项的算法(在程序中很可能表现为一个嵌套循环)中,当N=1000时,运行时间是1000000;如果N增长到原来的两倍,则运行时间将增长到原来的四倍。
N 的三次方类似的,如果一个算法需要处理输入数据想的三元组(很可能表现为三重嵌套循环),其运行时间一般就是三次的,只能用于一些规模较小的问题。当N=100时,运行时间就是1000000;如果N增长到原来的两倍,运行时间将会增长到原来的八倍。
2 的 N 次方如果一个算法的运行时间是指数级的(exponential),一般它很难在实践中使用,即使这样的算法通常是对问题的直接求解。当N=20时,运行时间是1000000;如果增长到原来的两倍时,运行时间将是原时间的平方!

log log N 可以看作是一个常数:即使 N 很多,两次去对数之后也会变得很小。


算法中 log 级别的时间复杂度都是由于使用了分治思想,这个底数直接由分治的复杂度决定。如果采用二分法,那么就会以2为底数,三分法就会以3为底数,其他亦然。不过无论底数是什么,log级别的渐进意义是一样的。也就是说该算法的时间复杂度的增长与处理数据多少的增长的关系是一样的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值