1.1 从最熟悉的完全平方公式说起
我们从初中就知道,这样的式子,可以展开成
对于这样的式子,我们又可以这样看
之后采用乘法分配律,不难得到
以此类推,我们还可以得到
不难发现,如果对于中,任意的
,我们都采用以完全平方公式为基础,结合乘法分配律,那么当n很大时,这样的算法耗费的时间无疑是庞大的。但是,幸运的是,在经过了多个n后,我们可以渐渐发现规律。
1.2 揭示两数和的n次方的规律
1.2.1 两数的系数、次数均为1
此时探究的模型为的展开式
-
规律罗列
对于这样的式子,
总有以下规律。
备注
如果读者忘记了多项式、单项式的概念,以及多项式、单项式的次数等等这些概念,那么应当回去翻翻初中的数学书了。
-
可以展开成一个多项式,当中的单项式,我们记为
,其中a,m,n为某个可以确定的常数
-
对于单项式,总符合
,也就是说,在展开的多项式中,任意一个单项式的次数总会和展开前的次数相等。
-
最后,就只剩下系数a的规律了。
-
-
揭示系数
的规律
在前面我们写出的
展开式的过程中,不难发现,每一个单项式都是通过合并同类项得到的。于是,我们不妨这样考虑,系数a就代表着有a个
个同类项。
接着,我们专注于考虑一个
又是什么意义呢?前面,我们已经认识到
,这也就相当于现在
总共有
个类别,其中
占据了
个,其余的分配给
。在学习了排列组合后,不难明白,这也就相当于从n个总数中抽取m个分配给x,余下y的分配也就确定了,从确定了
总共有多少种组合方式。把这一个又一个的
累加起来,也就是合并同类项,那么得到的就是系数
所以,系数
的意义就是说
总共有多少种组合方式,结合组合公式可得
当然,实际上,
的,所以,
写成
在展开式种也是没有问题的。
-
得出
展开式公式
由上论述,我们可以得到
的展开式,理解上面内容,下面的公式不难理解的,而且今后实际上不难遗忘这个式子的,可以说要用的时候,应当是信手拈来的。
-
-
数的变式
有些时候,我们遇见的并不是两数和,而是两数差。但实际上,初中之后,我们便说,减去一个数,相当于加上这个数的相反数,也就是说,减法可以看成加法的。
-
之后还有很多变式,笔者放到后面作为拓展介绍。
-
应用公式
-
计算展开式
有了这个公式,我们便可以在计算展开式时,只需要专注于每一个单项式,次数和系数,而无需再耗费时间、精力合并同类项。
例如
,我们只需要专注对于x的次数从0开始,直到7,而y的次数则是相应确定的,至于系数,则使用C_n^i即可确定,于是我们很快就可以得到
-
之后,专注于计算每一个的值,然后将得到的值代入到式子即可。
同样的,如果x,y给了实际的值,那么只需要在经过前面的步骤后,再专注于把x,y的值代入到已经处理好的式子即可。
通过这样,专注于专项工作的解题方式,可以较好地提高解题的正确率!
-
判断展开式不可能存在的项
【例题】
的展开式中存在项
解析:所求项的次数为
,不可能存在,所以这句话是错误的。注意,每个单项式的次数,当且仅当与二项式的次数相等时,才是正确的,这在前面展示规律的时候已经提到过的。
1.2.2 两数的系数存在大于1
此时探究的模型为,其中
为常数
此时,我们将分别看成一个整体,也就是说
相当于前面的
,
相当于前面y
那么这个时候可以得到式子
再利用运算规律,可以将常数a,b提取出来,得到
由此可以看出,作和运算的两数自带的系数,会影响最终展开项每个单项式的系数,贡献度为其占有的次数。
然而,此时就会出现矛盾和冲突了。前面我们说,系数代表组合的可能的情况的总数,但现在还乘以两数自带的系数!明显不再是组合可能的总数了,但明显还是,于是我们又作出概念的区分,把代表组合可能总数的系数贡献称为二项式系数,而把整合了两数自带系数的最终系数,只是简单的称为系数,不具有特殊的含义。
1.2.3 两数的次数存在大于1
此时探究的模型为,其中
都为常数
那么,类似地,我们还是先把分别看成是整体,那么得到式子
再利用运算规律,可以将常数a,b提取出来,得到
由此可以看出,作和运算的两数自带的次数,会影响最终展开项每个单项式的次数,贡献度为其次数值。
然而,此时也会和前面的规律发生冲突,显然此时单项式的次数之和不再为二项式的次数了!怎么办呢?这里,我们不再为其重新界定一个定义,而是注意需要进行变换,可以发现,自带次数的贡献方式为乘法运算,所以,如果要计算单项式的次数是否符合二项式次数,那么应当分别除以自带次数后再相加,以此验证是否符合二项式次数。
1.2.4 重理规律和概念
-
二项式系数
二项式系数揭露的规律是组合的可能性的总数。
-
展开式系数
展开式系数没有特殊含义,它是二项式系数乘以作和运算两数自带的系数的结果。
所以,需要注意了,审题需要看清楚,问题的是系数还是二项式系数!
要由系数计算二项式系数,这一点很难做到,因为合并同类项后,无法知道各个同类项本身的系数是多少,由此也就不能分别除以自带的系数了除,除非能够知道各个同类项本身的系数是多少。
-
二项式次数
这里只作数据处理的说明:我们需要把展开式中每个单项式的每个未知数的次数,分别对应作和运算的未知数的次数,之后再加起来,才能与二项式次数匹配,以此验证是否符合二项式次数。
1.3 拓展-回归二项式
1.3.1 基本情形
前面的论述中,我们是将式子展开了。但是,现在,我们想把一个很长的式子整合成一个简短的式子。特别基本的,就是原汁原味的二项式展开式子的逆用。也就是说,看到式子
就应当想到,可以把它整合成
1.3.2 残缺项
在基本情形中,情况很简单,而且很特殊,它相当于将一个多项式换算成一个单项式。但是,有些时候,我们无法那么完美地换算成一个单项式,只是能够尽可能地减少一些项。
-
缺失个别项
有些时候,它可能是缺少第一项,也有可能是缺少最后一项,总之,就是缺少某些项。这个时候,我们通过简单加减缺失的项,就可以凑出一个二项式了。
例如,对于式子
敏锐的你是否发现,这个式子是从i=1开始的?所以,如果我们要进行二项式处理,那么缺少了这一项。怎么办呢?我们可以像下面那样处理
最后得到
-
缺失很多项
有些时候,缺失的项并不在少数,通常,我们表达为需要有
的辅助,
才能凑成一个二项式。其中
都表示多项式。
-
形式上的化简缺失
这是一种障眼法,就类似于省略的0与1那样,让人无法敏锐地发觉这是二项式,或者感觉缺少了什么,让人犹豫。不过没关系,多看、多练、养成意识。
在前面,笔者是非常勤奋地把式子完整地写出来了,没有作任何的化简。现在,我们来看这个式子
很明显,把式子化简了。看上去,好像在某些单项式中y或者x是缺少了,但实际上是化简的结果,并没有真正的缺失。类似地,还有
多种多样的变换形式,但二项式的基本结构还是比较突出的,希望读者在往后面对一些问题时,能够敏锐地察觉。
1.3.3 交错杂合
有些时候,一个多项式,不仅只有一个二项式,可能有多个二项式,需要将它们分开。
-
多出某些常数
例如,对于下面的多项式,其中t为某个常数
那么,不难明白,应用二项式化简时,t是没有关系的,得到结果为
-
杂合另一个多项式
对于下面的多项式
不难发现,实际上有两个二项式,展开后杂合在一起,进行梳理后,读者应当就不难发现了
1.3.4 实例化情形的分辨
有些时候,给出的多项式并不是以字母的形式出现,而是每个字母使用了实际的阿拉伯数字。
这个时候,我们就会产生疑问,如何敏锐的察觉,这是一个二项式展开呢?
这个就需要个人的训练,以及在实际解决问题时,有二项式的意识了。
另外,如果说可以用二项式,那么在处理过程中,应当尽量找到共同的底x,y。
【例题】
1.3.5 结合二项式系数的规律
这一块的内容,笔者将他放置到拓展内容,这里不赘述,只是为了提醒读者,变换成二项式还可以从这个角度入手。
1.4 拓展-结合分配律
正如我们前面从完全平方和公式说起的那样,分配律也会为展开式中的单项式贡献次数。这个时候,我们又当如何理解,解决问题呢?
有了第一节的铺垫,读者不难明白,结合分配律的展开式,经过这样的过程
n次方先展开-->使用分配律-->合并同类项-->得到最终结果。
不难明白,使用分配律的过程,既会改变系数也会改变次数,而且初次展开的每一项的系数都被放大类倍数,这个倍数来自分配项的系数;在合并同类项的过程中,并不会改变前面已经得到的次数和系数,只是将已有的系数累加在一起而已。总的来说,最终结果,每一个单项式,系数被扩大了分配项的系数倍,次数加上了分配项未知数的次数。
所以,这样的问题,我们应当怎么解呢?首先,把n次方的项展开,然后再逐个分配,再合并同类项。
如果遇见的问题,把目标项已经给出了,那么可以这么解决。从目标项出发,减去分配项的次数,除以分配项的系数,这个项便是n次方的项展开后的核心,需要注意的是,得到展开项的系数需要乘以此时对应的中介项的系数,再累加。
简单来说,这里笔者提供了两种做法,一个是正向地从展开项出发,另一个则是逆向地从目标项出发引入了中介项。前者思维上比较符合习惯认知,但具有一定跳跃性,幸运的是跳跃的次数是稳定的,不会随着分配项的次数的增大而增大;后者思维顺畅,处理过程简单,但有些别扭,而且对于次数高的分配项,操作过程将随着次数的升高,操作越来越繁琐。
【例题1】展开式中
的系数为
解析:这个问题明显是结合分配律的情形,而且目标项已经给了,是x^4y^3,显然我们可以把(x-y)看作是分配项,于是从目标项出发,先逐个减去分配项的次数,乘以分配项的系数,得到最终需要合并的两个单项式
这两项,也就是需要展开得到的项,先不管中介项系数,把这里的展开项的次数和系数处理好
接着,不要忘记,还要把相应的中介项的系数乘回来
最后把系数累加便是目标项的系数
所以,所求项的系数为5
【例题2】展开式中
的系数为
类似上面的过程,我们得到中介项
现在,要把展开项朝着中介项的方向走,先围绕着中介项的次数展开
接着,不要忘记,还要处理中介项的系数,采用乘法
最后,把系数累加,便是目标项的系数
【例题3】展开式中
的系数为
-
想法一
发现好像没有分配项,可以选择一个比较简单的展开,作为分配项。毫无疑问,把
展开得到
下面,获取中介项
处理展开项,为了方便,这里只写系数了,但后面别忘了还要乘以中介项的系数
接着乘以中介项系数
累加系数即得目标项的系数
-
想法二
遇见这种较为复杂的,我建议,还是采用正向的思路。也就是说,从展开项出发,到达目标项。
下面展示步骤
先区分两个展开项,分别为
此时跳跃到目标项
,明确需要所有项对目标项的x贡献的次数总和为4,对y的贡献总和为4
再跳回到展开项,可以看到第二项能够贡献的x最多次数为2,最低次数为0,y最多次数为2
所以,可以从贡献最少的出发,分类讨论,第二项贡献的x的次数为0,则随之确定的是它贡献的y的次数为2,即对第二项展开计算得到
然后随之确定的是第一项的x必需贡献的次数为4,紧接着贡献的y的次数为2
然后将两式相乘,即可得到一部分目标项
以此类推,第二项的x贡献的次数分别为1,2时,得到的一部分目标项分别为
累加以上三种情况,可得全部目标项
所以目标项的系数为70
【例题4】展开式中
的系数为
-
想法一
注意,这里待展开项中第二项的x自身带有次数,我们可以选择简单第一项入手
第一项贡献的次数为0,1,2,3,4,此后以当
的形式表达第一项贡献的次数。
当\alpha = 0时,
,显然y的次数不符合目标项,所以排除
当
时,容易验证,应当排除(可以从x的角度,也可以从y的角度)
当
时,
,容易验证y的次数不符合目标项,所以排除
当
时,排除
当
时,
综上,所求系数为15
-
想法二
从自带次数的项入手,对于
的x向目标项的x贡献次数,由前面探究自带次数情形的推导可知,可以看成是
在为目标项贡献次数,之后让自带次数,这里是2,乘以外围次数,而外围次数是从0开始递增考虑的,于是它能够贡献的次数分别为0,2,4
之后的过程是类似的。不再赘述。
1.5 拓展-二项式系数的规律
现在,我们专门探究二项式系数的规律。在前面,我们就已经了解到,二项式系数是这样的一组数
-
与
的关系
它可以看作是简单的二项式模型
的展开式的系数。
因为在一般情形下x,y的取值是R上的任意数,此时,我们不妨令x=y=1,可以得到
这就是说,一个两数和的n次方的展开式中,所有二项式系数累加得到的结果为
-
与
的关系
它也可以看作是简单二项式模型
的展开式的系数。
此时,令
,于是
当n-i为偶数时,
;当
为奇数时,
该方程表明,奇数项和偶数项的个数是相等的。
这表明奇数位置的
的个数,与在偶数位置的个数相同,
又
也就是说,奇数位置的
的个数,与在偶数位置的个数相同,
于是,我们有,奇数位置的二项式系数的累加,为所有二项式系数累加的一半;同理,对偶数位置的二项式系数的累加,也为所有二项式系数累加的一半。
-
赋予x,y其它数
也许好奇的你,早就开始产生疑问,难道x,y不可以赋予其它数吗?当然是可以的,下面我们赋予其他值,来看看其他有趣的情形。
比如令
,可以i得到
哪里有趣呢?前面我们曾提到过,如果一个式子是一个多项式,那么或许你可以尝试着进行变换。
【例题1】计算
解析:此时,你应当敏锐地看到,这个多项式呈现局部对称,把3^i看成变量,呈现出1,4,6,4,1这样的对称情景。这时,你应当反应出
,那么
的底数3作为两数和的其中一个数,现在还少一个数,发现好像怎么都找不出类似
这样的结构,此时你应当反应出
,所以,这个看似找不到的数就是1了。
于是这个多项式便可以化简为
,其中n=4是怎么发现的呢?就看两数和中其中一个数在展开式中的最高次数。
【例题2】
解析:这时缺失项的情形,提取对称数据1,4,6,4,由此不难看出,缺失的是二次项系数为1的项,再回去看给出的多项式,可以确定缺失的是
,于是
1.6 拓展-N数和情形
-
N=3,即三数和情形
有了前面排列组合的的思想,现在来看三数和的情形就不困难了。这就相当于,三个位置,现在总共有n个球,无排序,第一个位置需要n_1个球,第二个位置需要n_2个球,第三个位置需要n_3个球,问总共有多少种放入方式?
对组合问题熟悉的你,一定想到,这样的算法,
所以对于这样的模型
要将式子展开,那么有
至于更一般的模型
,读者可以根据前面介绍的内容,自行推导。
-
N=4,即四数和情形
这里需要提醒的是,类似除去重复数那样,需要去除排序情况,详细解释可以参看笔者参考《排列组合中的重复排列处理》
所以,应有的的算法为