裂项相消的原理是什么

裂项相消是一种数学技巧,用于将分式分解成更简单的部分进行加减运算。本文从分母互质的分数开始,解释如何通过找到因数进行裂项,然后拓展到非互质分母的情况,强调寻找公倍数而非最小公倍数。此外,还讨论了等差数列中裂项相消的应用,揭示了其在数列求和中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们来看这样的式子,若m-n=d,那么  \frac{1}{m\cdot n}=\frac{1}{d}(\frac{1}{m}-\frac{1}{n})

那么这样的式子是什么意思呢?

就是说,如果我们要把一个分式,分解成两个分式进行加减运算,那么我们可以找到原分式分母的两因数即可进一步分解。

那么这样的式子是怎么来的呢?

我们先来看,分母互质的两个分数是怎么算的呢?同学们可以先思考一下。

是不是就是先通分,然后再进行分子上的运算。而通分我们一开始学的时候是不是找最下公倍数啊,那么问题来了,对于互质的两个数,最小公倍数是怎么样的呢?

比如\frac{1}{3}-\frac{1}{4}=\frac{4-3}{12}=\frac{1}{12}

可以看到,就是特别简单粗暴地,把两个数作乘法运算就是了。

如果我们要反过来,求这个分数是由哪两个分数运算得到的,也是一样的,先对分母进行处理,然后再对分子进行处理。

比如,现在要分解\frac{1}{18}

我们可以找到互质的两个数为2,9,有2\times 9 =18

那么,运算两分数得到\frac{1}{18}的步骤中,肯定有\frac{1}{2}-\frac{1}{9}

然而,我们会发现

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值