【深度学习】传统RNN的正向传播与反向传播

循环神经网络的正向传播与反向传播

一、正向传播

在这里插入图片描述

前向循环计算公式:
a ( t ) = t a n h ( W a x x ( t ) + W a a a ( t − 1 ) + b a ) a^{(t)} = tanh(W_{ax}x^{(t)} + W_{aa}a^{(t-1)} +b_{a}) a(t)=tanh(Waxx(t)+Waaa(t1)+ba)
y ( t ) = s o f t m a x ( W y a a ( t ) + b y ) y^{(t)} = softmax(W_{ya}a^{(t)} + b_{y}) y(t)=softmax(Wyaa(t)+by)

python实现rnn前向传播算法
# parameters是参数Waa、Wax、Wya、by、b等组成的字典
# a_prev是上一时间步的输出(a)
# x是训练数据
def rnn_step_forward(parameters, a_prev, x):
    
    Waa, Wax, Wya, by, b = parameters['Waa'], parameters['Wax'], parameters['Wya'], parameters['by'], parameters['b']
    a_next = np.tanh(np.dot(Wax, x) + np.dot(Waa, a_prev) + b) # hidden state
    p_t = softmax(np.dot(Wya, a_next) + by) # unnormalized log probabilities for next chars # probabilities for next chars 
    
    return a_next, p_t
def rnn_forward(X, Y, a0, parameters, vocab_size = 27):
    
    # Initialize x, a and y_hat as empty dictionaries
    x, a, y_hat = {}, {}, {}
    
    a[-1] = np.copy(a0)
    
    # initialize your loss to 0
    loss = 0
    
    for t in range(len(X)):
        
        # Set x[t] to be the one-hot vector representation of the t'th character in X.
        # if X[t] == None, we just have x[t]=0. This is used to set the input for the first timestep to the zero vector. 
        x[t] = np.zeros((vocab_size,1)) 
        if (X[t] != None):
            x[t][X[t]] = 1
        
        # Run one step forward of the RNN
        a[t], y_hat[t] = rnn_step_forward(parameters, a[t-1], x[t])
        if t==0:
            print(y_hat[t].shape)
        
        # Update the loss by substracting the cross-entropy term of this time-step from it.
        loss -= np.log(y_hat[t][Y[t],0])
        
    cache = (y_hat, a, x)
        
    return loss, cache

二、反向传播

在这里插入图片描述

  1. 上图中的 L t L^{t} Lt是每一步计算出来的损失(用负对数似然公式),最终的总损失 L = ∑ ( L t ) L=\sum(L^{t}) L=(Lt)
  • 负对数似然
    神经网络的输出通常是概率分布,一般使用负对数似然来作为损失函数。例如:假设训练集Y的one-hot表示是(0,1,0),预测值y的分布为(0,1,0.6, 0.3),则对于该训练样本的损失loss=-log0.6,然后最小化该loss,目的是让预测值y与真实y相对应位置的概率尽量大。
    如果X表示所有的输入,Y表示我们观测到的目标 θ M L = a r g θ m a x P ( Y ∣ X ; θ ) \theta_{ML} = arg_{\theta}maxP(Y|X;\theta) θML=argθmaxP(YX;θ)
    假设样本是独立同分布的,则上面公式实际情况是一连串训练样本的预测概率相乘,这种情况下可以用对数函数进行等价转换(方便计算): θ M L = a r g θ m a x ∑ i = 1 m l o g P ( y ( i ) ∣ x ( i ) ; θ ) \theta_{ML} = arg_{\theta}max\sum_{i=1}^mlogP(y^{(i)}|x^{(i)};\theta) θML=argθmaxi=1mlogP(y(i)x(i);θ)
    对于循环神经网络,其损失函数是每一时间步损失的和,也就是上图中所有的L之和: L ( x ( 1 ) , . . . , x ( t ) , y ( 1 ) , . . . , y ( t ) ) = ∑ t L ( t ) = − ∑ t l o g P m o d e l ( y ( t ) ∣ x ( 1 ) , . . . , x ( t ) ) L({x^{(1)},...,x^{(t)}},{y^{(1)},...,y^{(t)}}) = \sum_{t}L^{(t)} = -\sum_{t}logP_{model}(y^{(t)}|{x^{(1)},...,x^{(t)}}) L(x(1),...,x(t),y(1),...,y(t))=tL(t)=tlogPmodel(y(t)x(1),...,x(t))
    其中 P m o d e l ( y ( t ) ∣ x ( 1 ) , . . . , x ( t ) ) P_{model}(y^{(t)}|{x^{(1)},...,x^{(t)}}) Pmodel(y(t)x(1),...,x(t)) 需要读取模型输出向量y与真实向量y对应的项。
  1. RNN的反向传播需要按时间步从后往前推导(本质是一个优化问题和链式求导),我们要优化的目标函数就是总损失 L = ∑ ( L t ) L = \sum(L^{t}) L=(Lt)(最小化它),然后从t到0对其逐步求导。

例如求时间步t处,L对参数 W a y W_{ay} Way的偏导数:
在这里插入图片描述
3. RNN某一时间步内反向传播计算公式在这里插入图片描述

python实现RNN反向传播算法
def rnn_step_backward(dy, gradients, parameters, x, a, a_prev):
    
    gradients['dWya'] += np.dot(dy, a.T)
    gradients['dby'] += dy
    da = np.dot(parameters['Wya'].T, dy) + gradients['da_next'] # backprop into h
    daraw = (1 - a * a) * da # backprop through tanh nonlinearity
    gradients['db'] += daraw
    gradients['dWax'] += np.dot(daraw, x.T)
    gradients['dWaa'] += np.dot(daraw, a_prev.T)
    gradients['da_next'] = np.dot(parameters['Waa'].T, daraw)
    return gradients

 """
    
    Returns:
    parameters -- python dictionary containing:
                        X -- 训练数据
                        Y -- 真实值
                        parameters -- dict,include:Waa,Wax,Wya,by,b
                        cache--每一步的预测值y、a及训练样本x组成的字典
    """
def rnn_backward(X, Y, parameters, cache):
    # Initialize gradients as an empty dictionary
    gradients = {}
    
    # Retrieve from cache and parameters
    (y_hat, a, x) = cache
    Waa, Wax, Wya, by, b = parameters['Waa'], parameters['Wax'], parameters['Wya'], parameters['by'], parameters['b']
    
    # each one should be initialized to zeros of the same dimension as its corresponding parameter
    gradients['dWax'], gradients['dWaa'], gradients['dWya'] = np.zeros_like(Wax), np.zeros_like(Waa), np.zeros_like(Wya)
    gradients['db'], gradients['dby'] = np.zeros_like(b), np.zeros_like(by)
    gradients['da_next'] = np.zeros_like(a[0])
    
    # Backpropagate through time
    for t in reversed(range(len(X))):
        dy = np.copy(y_hat[t])
        dy[Y[t]] -= 1
        gradients = rnn_step_backward(dy, gradients, parameters, x[t], a[t], a[t-1])
    
    return gradients, a
  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值