Leetcode C++《热题 Hot 100-55》494. 目标和
- 题目
给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例 1:
输入: nums: [1, 1, 1, 1, 1], S: 3
输出: 5
解释:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
一共有5种方法让最终目标和为3。
注意:
数组非空,且长度不会超过20。
初始的数组的和不会超过1000。
保证返回的最终结果能被32位整数存下。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/target-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
- 思路
- 动态规划简单,就是每一个数前面有两个选择,要么加要么减去
- 数组长度不会超过20,数组的和不会超过1000,那么int[i][j] 表示从0-i的下标得到j
- 可能的方法数,有可能是从nums[i]加过来的或者减过来的
- dp[i][j] = dp[i-1][j-nums[i]] + dp[i-1][j+nums[i]] 根据前一状态可以得到后一状态
- 时间复杂度为O(n)
- 代码
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int S) {
if (nums.size() == 0)
return 0;
if (S > 1000 || S < -1000)
return 0;
int** dp = new int*[nums.size()];
for (int i = 0; i < nums.size(); i++)
dp[i] = new int[2001];
for (int i = 0; i < nums.size(); i++) {
for (int j = -1000; j <= 1000; j++) {
dp[i][j+1000] = 0;
}
}
//cout << "init" << endl;
dp[0][-nums[0]+1000] = 1;
dp[0][nums[0]+1000] += 1;
//cout << "init 0" << endl;
for (int i = 1; i < nums.size(); i++) {
for (int j = -1000; j <= 1000; j++) {
if (j-nums[i] >= -1000 )
dp[i][j+1000] += dp[i-1][j-nums[i]+1000];
if (j+nums[i] <= 1000)
dp[i][j+1000] += dp[i-1][j+nums[i]+1000];
}
}
return dp[nums.size()-1][S+1000];
}
};