题目
班上有 N 名学生。其中有些人是朋友,有些则不是。他们的友谊具有是传递性。如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友。所谓的朋友圈,是指所有朋友的集合。
给定一个 N * N 的矩阵 M,表示班级中学生之间的朋友关系。如果M[i][j] = 1,表示已知第 i 个和 j 个学生互为朋友关系,否则为不知道。你必须输出所有学生中的已知的朋友圈总数。
示例 1:
输入:
[[1,1,0],
[1,1,0],
[0,0,1]]
输出: 2
说明:已知学生0和学生1互为朋友,他们在一个朋友圈。
第2个学生自己在一个朋友圈。所以返回2。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/friend-circles
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
并查集的思路会很简单,找集合
时间复杂度n^2
代码
//并查集 int p[i] = j 表示i的爸爸是j,根节点等于-1
//两个节点是不是在一个集合,看他们的根是不是一样
class Solution {
public:
int *p;
int findCircleNum(vector<vector<int>>& M) {
int n = M.size();
if (n == 0)
return 0;
p = new int[n];
for (int i = 0; i < n; i++) {
newSet(i);
}
for (int i = 0; i < n; i++) {
for (int j = i+1; j < n; j++) {
if (M[i][j] == 1) {
unionSet(i,j);
}
}
}
int res = 0;
for (int i = 0; i < n; i++) {
if (p[i] == -1 || p[i] == i)
res++;
}
return res;
}
int newSet(int x) {
p[x] = x;
return x;
}
int find(int x) {
int t = x;
while(p[t]!= -1 && p[t]!=t){
t = p[t];
}
return t;
}
int unionSet(int x, int y) {
//index da的都做爸爸吧 y是爸爸
if (y < x)
swap(x, y);
int t1 = find(x);
int t2 = find(y);
if (t1 != t2) {
p[t1] = t2;
p[t2] = -1;
}
return t2;
}
};