《Programming Machine Learning》这本书是为开发者编写的机器学习入门书籍,旨在帮助开发者理解机器学习的基本原理,并能够编写自己的机器学习程序。书中的例子使用Python语言,从最基础的线性回归开始,逐步引导读者构建复杂的机器学习系统。内容包括监督学习、神经网络和深度学习,并且所有代码都是从零开始编写的,以帮助读者深入理解每一行代码的含义。
目录
Early Praise for Programming Machine Learning
- 引言部分,包括多个对本书的高度评价。
Contents
- Acknowledgments (致谢)
- How the Heck Is That Possible? (机器学习的神奇之处)
Part I — From Zero to Image Recognition
-
How Machine Learning Works (机器学习的工作原理)
- Programming vs. Machine Learning (编程与机器学习的对比)
- Supervised Learning (监督学习)
- The Math Behind the Magic (背后的数学原理)
- Setting Up Your System (系统设置)
-
Your First Learning Program (你的第一个学习程序)
- Getting to Know the Problem (了解问题)
- Coding Linear Regression (编写线性回归代码)
- Adding a Bias (添加偏差)
-
Walking the Gradient (梯度下降)
- Our Algorithm