麻省理工出版 2023年最新深度学习综述手册

这本手册详细介绍了深度学习的各个方面,从基础的监督学习、不监督学习和强化学习,到深度学习模型的训练、性能测量和改进。手册还包括了特定架构如卷积网络、残差网络和Transformer的详细讨论,以及生成对抗网络、变分自编码器、正则化流和扩散模型等现代深度生成模型。此外,手册还探讨了深度学习的伦理问题,强调了技术进步带来的潜在风险和责任。

目录

        1.Introduction

  • 1.1 Supervised learning

  • 1.2 Unsupervised learning

  • 1.3 Reinforcement learning

  • 1.4 Ethics

  • 1.5 Structure of book

  • 1.6 Other books

  • 1.7 How to read this book

        2.Supervised learning

  • 2.1 Supervised learning overview

  • 2.2 Linear regression example

  • 2.3 Summary

    3.Shallow neural networks
  • 3.1 Neural network example

  • 3.2 Universal approximation theorem

  • 3.3 Multivariate inputs and outputs

  • 3.4 Shallow neural networks: general case

  • 3.5 Terminology

  • 3.6 Summary

        4.Deep neural networks

  • 4.1 Composing neural networks

  • 4.2 From composing networks to deep networks

  • 4.3 Deep neural networks

  • 4.4 Matrix notation

  • 4.5 Shallow vs. deep neural networks

  • 4.6 Summary

        5.Loss functions

  • 5.1 Maximum likelihood

  • 5.2 Recipe for constructing loss functions

  • 5.3 Example 1: univariate regression

  • 5.4 Example

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值