这本手册详细介绍了深度学习的各个方面,从基础的监督学习、不监督学习和强化学习,到深度学习模型的训练、性能测量和改进。手册还包括了特定架构如卷积网络、残差网络和Transformer的详细讨论,以及生成对抗网络、变分自编码器、正则化流和扩散模型等现代深度生成模型。此外,手册还探讨了深度学习的伦理问题,强调了技术进步带来的潜在风险和责任。
目录
1.Introduction
-
1.1 Supervised learning
-
1.2 Unsupervised learning
-
1.3 Reinforcement learning
-
1.4 Ethics
-
1.5 Structure of book
-
1.6 Other books
-
1.7 How to read this book
2.Supervised learning
-
2.1 Supervised learning overview
-
2.2 Linear regression example
-
2.3 Summary
3.Shallow neural networks -
3.1 Neural network example
-
3.2 Universal approximation theorem
-
3.3 Multivariate inputs and outputs
-
3.4 Shallow neural networks: general case
-
3.5 Terminology
-
3.6 Summary
4.Deep neural networks
-
4.1 Composing neural networks
-
4.2 From composing networks to deep networks
-
4.3 Deep neural networks
-
4.4 Matrix notation
-
4.5 Shallow vs. deep neural networks
-
4.6 Summary
5.Loss functions
-
5.1 Maximum likelihood
-
5.2 Recipe for constructing loss functions
-
5.3 Example 1: univariate regression
-
5.4 Example