实验5MapReduce初级编程实践

1.实验目的

(1)通过实验掌握基本的MapReduce编程方法;

(2)掌握用MapReduce解决一些常见的数据处理问题,包括数据去重、数据排序和数据挖掘等。

2.实验平台

(1)操作系统:Linux(建议Ubuntu16.04或Ubuntu18.04)

(2)Hadoop版本:3.1.3

3.实验步骤

(一)编程实现文件合并和去重操作

对于两个输入文件,即文件A和文件B,请编写MapReduce程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新的输出文件C。下面是输入文件和输出文件的一个样例供参考。

输入文件A的样例如下:

20170101 x

20170102 y

20170103 x

20170104 y

20170105 z

20170106 x

输入文件B的样例如下:

20170101 y

20170102 y

20170103 x

20170104 z

20170105 y

根据输入文件A和B合并得到的输出文件C的样例如下:

20170101 x

20170101 y

20170102 y

20170103 x

20170104 y

20170104 z

20170105 y

20170105 z

20170106 x

 

打包eclipse的merge, 运行程序:bin/hadoop jar myapp/Merge.jar 

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class Merge {

	/**
	 * @param args
	 * 对A,B两个文件进行合并,并剔除其中重复的内容,得到一个新的输出文件C
	 */
	//重载map函数,直接将输入中的value复制到输出数据的key上
	public static class Map extends Mapper<Object, Text, Text, Text>{
		private static Text text = new Text();
		public void map(Object key, Text value, Context context) throws IOException,InterruptedException{
			text = value;
			context.write(text, new Text(""));//括号内容作为中间结果扔出去交给shuffle处理
		}
	}
	
	//重载reduce函数,直接将输入中的key复制到输出数据的key上
	public static class Reduce extends Reducer<Text, Text, Text, Text>{
		public void reduce(Text key, Iterable<Text> values, Context context ) throws IOException,InterruptedException{
			context.write(key, new Text(""));
		}
	}
	
	public static void main(String[] args) throws Exception{
		
		// TODO Auto-generated method stub
		Configuration conf = new Configuration();//程序运行时的参数
		conf.set("fs.default.name","hdfs://localhost:9000");
		String[] otherArgs = new String[]{"input","output"}; /* 直接设置输入参数 */
		if (otherArgs.length != 2) {
			System.err.println("Usage: wordcount <in><out>");
			System.exit(2);
			}
		Job job = Job.getInstance(conf,"Merge and duplicate removal");//设置环境参数
		job.setJarByClass(Merge.class);//设置整个程序的类名
		job.setMapperClass(Map.class);//添加Mapper类
		job.setCombinerClass(Reduce.class);//设置Combiner类
		job.setReducerClass(Reduce.class);//添加Reducer类
		job.setOutputKeyClass(Text.class);//设置输出类型
		job.setOutputValueClass(Text.class);//设置输出类型
		FileInputFormat.addInputPath(job, new Path(otherArgs[0]));//设置输入原始文件文件路径
		FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//设置输出文件路径
		//Job运行是通过job.waitForCompletion(true),true表示将运行进度等信息及时输出给用户,false的话只是等待作业结束
		boolean result = job.waitForCompletion(true);
		System.exit(result ? 0 : 1);
	}

}

(二)编写程序实现对输入文件的排序

现在有多个输入文件,每个文件中的每行内容均为一个整数。要求读取所有文件中的整数,进行升序排序后,输出到一个新的文件中,输出的数据格式为每行两个整数,第一个数字为第二个整数的排序位次,第二个整数为原待排列的整数。下面是输入文件和输出文件的一个样例供参考。

输入文件1的样例如下:

33

37

12

40

输入文件2的样例如下:

4

16

39

5

输入文件3的样例如下:

1

45

25

根据输入文件1、2和3得到的输出文件如下:

1 1

2 4

3 5

4 12

5 16

6 25

7 33

8 37

9 39

10 40

11 45

 

 

 

打包eclipse的MergeSort, 运行程序:bin/hadoop jar myapp/MergeSort.jar 

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;


public class MergeSort {

	/**
	 * @param args
	 * 输入多个文件,每个文件中的每行内容均为一个整数
	 * 输出到一个新的文件中,输出的数据格式为每行两个整数,第一个数字为第二个整数的排序位次,第二个整数为原待排列的整数
	 */
	//map函数读取输入中的value,将其转化成IntWritable类型,最后作为输出key
	public static class Map extends Mapper<Object, Text, IntWritable, IntWritable>{
		
		private static IntWritable data = new IntWritable();
		public void map(Object key, Text value, Context context) throws IOException,InterruptedException{
			String text = value.toString();
			data.set(Integer.parseInt(text));//将括号内容复制给data对象
			context.write(data, new IntWritable(1));//括号内容作为中间结果扔出去交给shuffle处理
		}
	}
	
	//reduce函数将map输入的key复制到输出的value上,然后根据输入的value-list中元素的个数决定key的输出次数,定义一个全局变量line_num来代表key的位次
	public static class Reduce extends Reducer<IntWritable, IntWritable, IntWritable, IntWritable>{
		private static IntWritable line_num = new IntWritable(1);
		
		public void reduce(IntWritable key, Iterable<IntWritable> values, Context context) throws IOException,InterruptedException{
			for(IntWritable val : values){
				context.write(line_num, key);
				line_num = new IntWritable(line_num.get() + 1);
			}
		}
	}
	
	//自定义Partition函数,此函数根据输入数据的最大值和MapReduce框架中Partition的数量获取将输入数据按照大小分块的边界,然后根据输入数值和边界的关系返回对应的Partiton ID
	public static class Partition extends Partitioner<IntWritable, IntWritable>{
		public int getPartition(IntWritable key, IntWritable value, int num_Partition){
			int Maxnumber = 65223;//int型的最大数值
			int bound = Maxnumber/num_Partition+1;
			int keynumber = key.get();//从key的序列类型转换成int类型
			for (int i = 0; i<num_Partition; i++){
				if(keynumber<bound * (i+1) && keynumber>=bound * i){
					return i;
				}
			}
			return -1;// 表示返回一个代数值,一般用在子函数结尾。按照程序开发的一般惯例,表示该函数失败;
		}
	}
	
	public static void main(String[] args) throws Exception{
		// TODO Auto-generated method stub
		Configuration conf = new Configuration();//程序运行时的参数
		conf.set("fs.default.name","hdfs://localhost:9000");
		String[] otherArgs = new String[]{"input","output"}; /* 直接设置输入参数 */
		if (otherArgs.length != 2) {
			System.err.println("Usage: wordcount <in><out>");
			System.exit(2);
			}
		Job job = Job.getInstance(conf,"Merge and sort");//设置环境参数
		job.setJarByClass(MergeSort.class);//设置整个程序的类名
		job.setMapperClass(Map.class);//添加Mapper类
		job.setReducerClass(Reduce.class);//添加Reducer类
		job.setPartitionerClass(Partition.class);//添加Partitioner类
		job.setOutputKeyClass(IntWritable.class);//设置输出类型
		job.setOutputValueClass(IntWritable.class);//设置输出类型
		FileInputFormat.addInputPath(job, new Path(otherArgs[0]));//设置输入原始文件文件路径
		FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//设置输出文件路径
		//Job运行是通过job.waitForCompletion(true),true表示将运行进度等信息及时输出给用户,false的话只是等待作业结束
		boolean result = job.waitForCompletion(true);
		System.exit(result ? 0 : 1);
	}

}

(三)对给定的表格进行信息挖掘

下面给出一个child-parent的表格,要求挖掘其中的父子辈关系,给出祖孙辈关系的表格。

输入文件内容如下:

child parent

Steven Lucy

Steven Jack

Jone Lucy

Jone Jack

Lucy Mary

Lucy Frank

Jack Alice

Jack Jesse

David Alice

David Jesse

Philip David

Philip Alma

Mark David

Mark Alma

输出文件内容如下:

grandchild   grandparent

Steven         Alice

Steven         Jesse

Jone             Alice

Jone            Jesse

Steven         Mary

Steven         Frank

Jone            Mary

Jone           Frank

Philip           Alice

Philip          Jesse

Mark           Alice

Mark           Jesse

 

 

 打包eclipse的simple_data_mining, 运行程序:bin/hadoop jar myapp/simple_data_mining.jar 

import java.io.IOException;
import java.util.*;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class simple_data_mining {
	public static int time = 0;

	/**
	 * @param args
	 * 输入一个child-parent的表格
	 * 输出一个体现grandchild-grandparent关系的表格
	 */
	//Map将输入文件按照空格分割成child和parent,然后正序输出一次作为右表,反序输出一次作为左表,需要注意的是在输出的value中必须加上左右表区别标志
	public static class Map extends Mapper<Object, Text, Text, Text>{
		public void map(Object key, Text value, Context context) throws IOException,InterruptedException{
			String child_name = new String();
			String parent_name = new String();
			String relation_type = new String();
			String line = value.toString();
			int i = 0;
			while(line.charAt(i) != ' '){
				i++;
			}
			String[] values = {line.substring(0,i),line.substring(i+1)};
			if(values[0].compareTo("child") != 0){
				child_name = values[0];
				parent_name = values[1];
				relation_type = "1";//左右表区分标志
				context.write(new Text(values[1]), new Text(relation_type+"+"+child_name+"+"+parent_name));
				//左表
				relation_type = "2";
				context.write(new Text(values[0]), new Text(relation_type+"+"+child_name+"+"+parent_name));
				//右表
			}
		}
	}
	
	public static class Reduce extends Reducer<Text, Text, Text, Text>{
		public void reduce(Text key, Iterable<Text> values,Context context) throws IOException,InterruptedException{
			if(time == 0){   //输出表头
				context.write(new Text("grandchild"), new Text("grandparent"));
				time++;
			}
			int grand_child_num = 0;
			String grand_child[] = new String[10];
			int grand_parent_num = 0;
			String grand_parent[]= new String[10];
			Iterator ite = values.iterator();
			while(ite.hasNext()){
				String record = ite.next().toString();
				int len = record.length();
				int i = 2;
				if(len == 0) continue;
				char relation_type = record.charAt(0);
				String child_name = new String();
				String parent_name = new String();
				//获取value-list中value的child
				
				while(record.charAt(i) != '+'){
					child_name = child_name + record.charAt(i);
					i++;
				}
				i=i+1;
				//获取value-list中value的parent
				while(i<len){
					parent_name = parent_name+record.charAt(i);
					i++;
				}
				//左表,取出child放入grand_child
				if(relation_type == '1'){
					grand_child[grand_child_num] = child_name;
					grand_child_num++;
				}
				else{//右表,取出parent放入grand_parent
					grand_parent[grand_parent_num] = parent_name;
					grand_parent_num++;
				}
			}

			if(grand_parent_num != 0 && grand_child_num != 0 ){
				for(int m = 0;m<grand_child_num;m++){
					for(int n=0;n<grand_parent_num;n++){
						context.write(new Text(grand_child[m]), new Text(grand_parent[n]));
						//输出结果
					}
				}
			}
		}
	}
	public static void main(String[] args) throws Exception{
		// TODO Auto-generated method stub
		Configuration conf = new Configuration();
        conf.set("fs.default.name","hdfs://localhost:9000");
		String[] otherArgs = new String[]{"input","output"}; /* 直接设置输入参数 */
		if (otherArgs.length != 2) {
			System.err.println("Usage: wordcount <in><out>");
			System.exit(2);
			}
        Job job = Job.getInstance(conf,"Single table join");
		job.setJarByClass(simple_data_mining.class);
		job.setMapperClass(Map.class);
		job.setReducerClass(Reduce.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(Text.class);
		FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
		FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
		System.exit(job.waitForCompletion(true) ? 0 : 1);
		
	}
}

### 回答1: 实验五是关于MapReduce初级编程实践实验MapReduce是一种分布式计算框架,可以用于处理大规模数据集。在这个实验中,我们将学习如何使用MapReduce框架来处理数据。 在实验中,我们将使用Hadoop作为MapReduce框架的实现。我们将学习如何编写MapReduce程序,包括Mapper和Reducer函数。我们还将学习如何使用Hadoop的命令行工具来运行MapReduce程序。 在实验中,我们将使用一个简单的例子来说明如何使用MapReduce框架。我们将使用一个包含单词的文本文件作为输入数据,并计算每个单词在文件中出现的次数。我们将使用MapReduce框架来实现这个功能,并输出每个单词的出现次数。 通过这个实验,我们将学习如何使用MapReduce框架来处理大规模数据集,并了解MapReduce框架的基本原理和使用方法。 ### 回答2: MapReduce初级编程实践是一门非常重要的课程,它是大数据处理领域的基础课程。该课程旨在通过让学生实践MapReduce编程,让学生掌握分布式计算框架的使用和数据处理的方法。 在实验五中,开发者需要完成以下任务: 1. 实现一个WordCount任务:将一个文本文件中所有单词的出现次数计算出来,并按照单词出现的次数从高到低排序输出。 2. 实现一个InvertedIndex任务:将一个文本文件中所有单词所在的行数记录下来,并按照单词从A到Z的顺序输出。 在实现任务时,需要使用Hadoop作为分布式计算框架,使用Java作为编程语言。MapReduce框架将输入数据分成若干个小块,每个节点对每个小块进行数据处理,并将处理结果汇总到一起。开发者需要编写Map和Reduce函数,Map函数将每个小块的数据进行处理,将处理结果以键值对的形式输出。Reduce函数将所有Map输出的键值对进行汇总,生成最终的结果。 实验五的目的是让学生了解MapReduce的工作原理和使用方法,同时提高学生的编码能力和数据处理能力。学生需要自己思考如何实现任务,并且在实现过程中要解决一些问题,比如如何进行输入输出,如何对文本进行分词,如何进行排序等等。通过解决这些问题,学生可以深入理解MapReduce的运行机制,并掌握大数据处理的方法和技巧。 总之,实验MapReduce初级编程实践是一门非常有价值的课程,它可以让学生掌握分布式计算框架的使用和数据处理的方法,具有重要的实践意义。 ### 回答3: MapReduce是一种分布式计算框架,用于处理海量数据。它的基本思想是将大问题分解成小问题,分发到不同的计算机上进行并行处理,最后将结果合并起来。MapReduce解决了并行计算中数据划分、任务调度、通信等问题,是大数据处理的重要工具。 在实验五中,我们学习了MapReduce初级编程实践。具体来说,就是编写两个程序:WordCount和InvertedIndex。WordCount的功能是统计文本中各个单词出现的次数,而InvertedIndex的功能是建立单词与文档之间的映射关系。 在WordCount中,我们需要实现map和reduce两个函数。map函数将文本分割成单词,以键值对的形式传给reduce函数。reduce函数将同一单词的键值对合并起来,并计算出该单词在文本中出现的总次数。这样,我们就能得到一个单词和其出现次数的映射关系表。 在InvertedIndex中,我们也需要实现map和reduce两个函数。map函数首先将文本的每一行分割成单词,然后以文件名(或URL)为键,以单词出现的次数为值,生成键值对。reduce函数将同一单词的键值对合并起来,并将该单词出现的文件名和次数列表作为值存入哈希表中。这样,我们就能得到一个单词和其出现的所有文件名及出现次数的映射关系表。 通过实验五的学习和实践,我们了解了MapReduce的基本原理和编程方法。同时,我们也深刻认识到了分布式计算的优越性,它能够大大加速数据处理和分析过程,提高工作效率,拓展了我们的视野和思路。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值