- 博客(7)
- 收藏
- 关注
原创 报错AttributeError: module ‘tensorflow.keras.layers‘ has no attribute ‘Rescaling‘解决
困扰了好久的问题终于解决了,希望能帮助到大家。原因tf版本为2.5或以上。
2024-05-30 18:00:34 462
原创 conda 解决An HTTP error occurred when trying to retrieve this URL
打开.condarc文件。
2023-12-01 09:02:29 11581 1
原创 树莓派部署yolov5-lite全过程及踩坑记录
总之,YOLOv5-Lite模型相较于YOLOv5更轻、更快、更易部署,将其部署到树莓派上可以实现实时目标检测,并节约成本和提供便携性。内容包括树莓派上部署yolov5-lite模型
2023-10-14 15:48:16 3777 7
原创 YOLO数据集增强详细过程及遇到的问题xml.etree.ElementTree.ParseError: no element found: line 15, column 0 解决
由于自己做的数据集数量太少,训练效果低,于是打算利用数据增强的方法实现了带标签的样本扩充。
2023-10-02 09:00:00 395
原创 跌倒目标检测,云端训练yolov5-lite和用自己电脑训练差别巨大,简直太强了
为什么建议新手小白或者急于训练的人在云端进行训练?简单方便是一个原因,其次是环境部署的更好,训练效果更高,如果你不信可以看看我的训练效果对比
2023-10-01 11:50:49 622 1
原创 简单对电脑无要求不用配置环境直接在云端进行yolov3-tiny训练
yolov3-tiny主要用于部署到树莓派等快速检测的项目,实用价值很高,在大学各种人工智能和有关目标检测项目的竞赛竞赛中基本都会用到。现在对yolo系列主流使用的框架是pytorch,主要原因是tensorflow-gpu框架的要求太严格,我曾经也想用tensorflow-gpu去配置环境,但是由于yolov3-tiny模型太早了,30系列的显卡对于它而言配置太好了,但是现在大学生都是30系列的显卡的电脑,所以部署环境第一步就被卡死了。
2023-09-30 11:52:52 1878 5
19届智能车字母数据集
2024-06-06
eiq模型,19届新训练的
2024-06-05
yolov5-lite树莓派部署文件,参考博客yolov5lite部署使用
2023-10-14
yolov5.zip,包含5000多张标记好的跌倒数据集,布置完环境即可训练
2023-10-06
yolov3-tiny训练的模型,可以进行训练目标检测并且部署到树莓派上,pytorch框架进行搭建建
2023-10-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人