自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 报错AttributeError: module ‘tensorflow.keras.layers‘ has no attribute ‘Rescaling‘解决

困扰了好久的问题终于解决了,希望能帮助到大家。原因tf版本为2.5或以上。

2024-05-30 18:00:34 462

原创 conda 解决An HTTP error occurred when trying to retrieve this URL

打开.condarc文件。

2023-12-01 09:02:29 11581 1

原创 树莓派部署yolov5-lite全过程及踩坑记录

总之,YOLOv5-Lite模型相较于YOLOv5更轻、更快、更易部署,将其部署到树莓派上可以实现实时目标检测,并节约成本和提供便携性。内容包括树莓派上部署yolov5-lite模型

2023-10-14 15:48:16 3777 7

原创 YOLO数据集增强详细过程及遇到的问题xml.etree.ElementTree.ParseError: no element found: line 15, column 0 解决

由于自己做的数据集数量太少,训练效果低,于是打算利用数据增强的方法实现了带标签的样本扩充。

2023-10-02 09:00:00 395

原创 跌倒目标检测,云端训练yolov5-lite和用自己电脑训练差别巨大,简直太强了

为什么建议新手小白或者急于训练的人在云端进行训练?简单方便是一个原因,其次是环境部署的更好,训练效果更高,如果你不信可以看看我的训练效果对比

2023-10-01 11:50:49 622 1

原创 yolo格式txt转xml格式经验总结及成功过程

本文详细介绍了yolo格式txt转换为xml格式的踩坑过程和成功经验,希望对大家有所帮助

2023-09-30 20:20:59 1725 2

原创 简单对电脑无要求不用配置环境直接在云端进行yolov3-tiny训练

yolov3-tiny主要用于部署到树莓派等快速检测的项目,实用价值很高,在大学各种人工智能和有关目标检测项目的竞赛竞赛中基本都会用到。现在对yolo系列主流使用的框架是pytorch,主要原因是tensorflow-gpu框架的要求太严格,我曾经也想用tensorflow-gpu去配置环境,但是由于yolov3-tiny模型太早了,30系列的显卡对于它而言配置太好了,但是现在大学生都是30系列的显卡的电脑,所以部署环境第一步就被卡死了。

2023-09-30 11:52:52 1878 5

19届智能车字母数据集

国内,军事智能化应用领域受到广泛关注。近年来,人工智能技术在军事领域的应 用逐渐增多,涵盖了智能化军事装备、作战决策辅助等多个方面。机器视觉技术在军事应 用中也得到了广泛运用,包括目标识别、情报收集等方面。智能车辆系统在军事领域的应 用也日益增多,用于执行救援任务、物资运输等。比如清华大学研发的独臂机器人,具备 搜寻和抓取的能力,主要用于复杂环境中的救援任务,如地震灾区。中国科学院自动化研 究所研制的智能搜救机器人,也可在恶劣环境下执行任务,包括火灾救援和有毒气体泄漏 处理。 然而,军事智能化应用的研究和实际应用仍面临一些挑战,包括对复杂环境的适应性、 系统的稳定性和安全性等问题。此外,对于反恐场景的模拟和智能车的自主运动进行物资 分类收集等方面的研究还相对较少。

2024-06-06

eiq模型,19届新训练的

该分类模型采用了一种高效的架构,大大减少了模型参数和计算量,这使得它非常适合在移动和嵌入式设备上进行实时图像分类和检测。在速度与性能的平衡上,该模型通过使用深度可分离卷积来降低计算复杂度,同时保持或甚至提高分类的准确性。另外,MobileNetV2引入了反向残差结构,这种结构有助于提高模型的学习能力,同时减少参数数量。一个是残差连接: 帮助梯度在深层网络中传播,减少训练难度,提高准确性。一个是线性瓶颈: 在每个残差块的开始和结束使用线性激活函数,有助于模型学习更丰富的特征。其次,MobileNetV2通过在残差块中引入线性瓶颈和通道注意力机制,提高了模型的表达能力。最后在部署方面,由于MobileNetV2的设计考虑了在资源有限的设备上进行推理,因此它可以在不牺牲太多准确性的情况下,提供高资源利用率,同时由于其结构简单,MobileNetV2易于在各种硬件上进行部署,包括CPU、GPU和专用神经网络加速器。

2024-06-05

yolov5-lite树莓派部署文件,参考博客yolov5lite部署使用

olov5-lite的优点主要包括轻量级、速度快和易于部署,这使得它特别适合在资源受限的设备上使用,例如树莓派。以下是在树莓派上部署yolov5-lite的步骤: 首先,需要在树莓派上安装必要的依赖项,包括Python和OpenCV等。 然后,需要下载yolov5-lite的代码和预训练模型。 接下来,可以通过修改代码中的配置文件来定制模型的行为。 最后,运行代码即可使用yolov5-lite进行目标检测。 需要注意的是,具体的部署步骤可能会因为不同的树莓派型号和操作系统而略有不同。因此,在进行部署之前,建议仔细阅读相关文档和教程,确保所有步骤都正确完成。yolov5-lite部署在树莓派上的优势主要体现在以下几个方面: 轻量级:yolov5-lite是针对资源受限设备优化的轻量级目标检测模型,能够在树莓派上实现高效运行,同时保持较高的准确性。 实时性:yolov5-lite具有较快的推理速度,可以在树莓派上实现实时目标检测,适用于各种实时应用场景。 易于部署:yolov5-lite的代码和模型都是开源的,易于获取和部署,使得开发者可以快速地将其应用到树莓派上。

2023-10-14

yolov5.zip,包含5000多张标记好的跌倒数据集,布置完环境即可训练

yolov5完善的环境布置,自己已完成训练,包含5000多张跌倒训练数据集和标签,都已整理好,布置完环境即可训练。YOLOv5(You Only Look Once, Version 5)是一种实时目标检测算法,具有高速、高精度的特点,被广泛应用于各种计算机视觉任务中。YOLOv5通过一个单一的神经网络实现目标检测和分类。它采用全卷积网络(Fully Convolutional Network, FCN)结构,将输入图像分割成网格,每个网格单元负责检测其内部的目标。与先前的目标检测算法相比,YOLOv5具有更快的速度和更高的精度,因为它在预测时不需要进行滑动窗口或区域提议。YOLOv5适用于所有需要进行目标检测和分类的场景,特别是那些需要实时性、高精度和大规模数据处理的应用。例如,无人机、自动驾驶、智能监控、机器人视觉等领域的开发人员和应用工程师都可以使用YOLOv5来提高其产品的性能和效率。YOLOv5的目标是提供一个高效、准确、易于使用的目标检测框架,可以在各种不同的场景和应用中进行使用。它通过一个单一的神经网络实现端到端的检测,减少了先前算法中多个步骤的处理时间,提高了检测速度

2023-10-06

yolov3-tiny训练的模型,可以进行训练目标检测并且部署到树莓派上,pytorch框架进行搭建建

yolov3-tiny训练模型,用pytorch框架搭建,让高配置的电脑,笔记本也能训练v3tiny模型,并且部署到树莓派等视觉实践项目中进行视频实时目标检测,优点在于检测速度快,模型体积小,方便部署和搭建,对于很多新手小白来说十分友好,该模型搭配我博客所讲的方法可以让你们快速入门进行目标检测项目,YOLOv3是一种基于深度神经网络的对象识别和定位算法,其最大的特点是运行速度很快,可以用于实时系统。而YOLOv3-tiny是YOLOv3的简化版。YOLOv3-tiny是YOLO系列中的一个目标检测模型。它是基于深度学习算法的目标检测模型,具有较快的检测速度和较低的计算资源要求。YOLOv3-tiny相对于YOLOv4-tiny在性能上有所下降,但仍然可以实现一定的目标检测准确率。yolov3-tiny 相对于其他版本的 yolo 网络有以下优势yolov3-tiny 具有更快的推理速度,适用于对实时性要求较高的应用场景。 yolov3-tiny 在保持较高检测精度的同时,具有更小的模型体积,占用更少的存储空间。 yolov3-tiny 适合于在计算资源有限的设备上进行目标检测任务。

2023-10-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除