LeetCode - 买卖股票题目汇总题解
我的LeetCode主页,一题一题解
121. 买卖股票的最佳时机 I(简单)
买卖股票的最佳时机 I:
https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock
题目
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票一次),设计一个算法来计算你所能获取的最大利润。
注意:你不能在买入股票前卖出股票。
示例 1:
输入: [7,1,5,3,6,4]
输出: 5
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
解题思路
首先是对题目意思的理解
买卖股票这种事情大家都多少都有耳闻甚至实际操作过,而题目的要求就是简化版
- 题目将给出一个数组,里面将存储全部的股票的价格信息
- 但是在整个遍历的过程中你都只能交易一次
题目分析
按时由于在整个过程中都只能交易一次
那么就意味着你只能找一个低点买入一个高点卖出,然后使得中间的差值最大
而且只能买入再卖出,那么低点必然在高点之前
所以就只要遍历一遍就能获得出最终的答案
- 首先将第一点设置为最低点,然后从左到右遍历,寻找最低点
- 如果遇到的价格比最低点高,则尝试买入
代码
class Solution {
public int maxProfit(int[] prices) {
//特殊情况
if(prices.length <= 1) return 0;
//min记录最小的价格,最小的价格只能出现在当前这天之前,所以只需要获取到当前这天最小的价格就好了
//res记录结果,即最大差价,res则为最终结果
int min = prices[0], res = 0;
for(int i = 1; i < prices.length; i++) {
if(min > prices[i])
min = prices[i]; // 更新最低价格
else if(res < prices[i] - min) //尝试买入
res = prices[i] - min;
}
return res;
}
}
122. 买卖股票的最佳时机 II(简单)
买卖股票的最佳时机 II:
https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-ii
题目
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
提示:
- 1 <= prices.length <= 3 * 10 ^ 4
- 0 <= prices[i] <= 10 ^ 4
解题思路
首先是对题目意思的理解
II就是在I的基础上解除了只能进行一次买入操作的限制,快进到无限购买
题目分析
贪心
由于操作没有次数限制而且还不手手续费
那不是只要赚差价就好了
只要前一天价格比后一天低,我就赚了这个中间的差价
动态规划
同样这个题目也可以用动态规划
首先可以确定每天只有两个状态
- 空仓
空仓可以由两种状态转换而来
- 本来就没有,这次继续没有
- 本来有,但是这次卖了
- 持仓
持仓可以由两种状态转换而来
- 本来有,这次继续持有
- 本来没有,但是这次买入
代码
贪心代码
class Solution {
public int maxProfit(int[] prices) {
int res=0;
for(int i=1; i <= prices.length - 1; i++)
if(prices[i] > prices[i-1])
res += prices[i] - prices[i-1];
return res;
}
}
动态规划代码
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int sell = 0, hold = -prices[0];
for (int i = 1; i < n; ++i) {
sell = Math.max(sell, hold + prices[i]);
hold = Math.max(hold, sell - prices[i]);
}
return sell;
}
}
714. 买卖股票的最佳时机含手续费(中等)
题目
给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:
输入: prices = [1, 3, 2, 8, 4, 9], fee = 2
输出: 8
解释: 能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
注意:
- 0 < prices.length <= 50000.
- 0 < prices[i] < 50000.
- 0 <= fee < 50000.
解题思路
首先是对题目意思的理解
在上一题的基础上加上了手续费,终于不能白嫖了呢
- 无限买卖
- 只能卖空再买
- 每次卖出要收手续费
题目分析(简单dp)
因为还是只能卖空再买入,那么简单来说每天最终只会有两个状态:
- 空仓
空仓可以由两种状态转换而来
- 本来就没有,这次继续没有
- 本来有,但是这次卖了
即 dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee);
- 持仓
持仓可以由两种状态转换而来
- 本来有,这次继续持有
- 本来没有,但是这次买入
即 dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
- 其中的卖出是要收手续费的,所以在状态方程中要计入手续费
对于初始状态:
空仓的时候没有就是没有
持仓的时候就说明第一天就买了