动态规划归纳

本文详细介绍了动态规划在股票系列、其他系列和区间DP中的应用,包括买卖股票的最佳时机、最长公共子序列、最大子数组和等问题。通过实例解析和解题思路,阐述了如何利用动态规划解决这些问题,帮助读者深入理解动态规划的运用。
摘要由CSDN通过智能技术生成

目录

线性DP

股票系列

 121. 买卖股票的最佳时机

122. 买卖股票的最佳时机 II

 123. 买卖股票的最佳时机 III

309. 最佳买卖股票时机含冷冻期

 其他系列

百度笔试题

 1143. 最长公共子序列

53. 最大子数组和

被K整除的最大子数组

最长递增子序列

Leetcode 类似题型 152. 乘积最大子数组

Leetcode 类似题型 221. 最大正方形

最长公共子序列

32. 最长有效括号

10. 正则表达式匹配

64. 最小路径和

 198. 打家劫舍

72. 编辑距离

96. 不同的二叉搜索树

 139. 单词拆分

字节跳动高频题——圆环回原点问题

5. 最长回文子串

区间DP

312. 戳气球

背包DP

经典背包问题

518. 零钱兑换 II

279. 完全平方数

322. 零钱兑换

 416. 分割等和子集

494. 目标和

树状DP

337. 打家劫舍 III


线性DP

股票系列

总结:根据题意确定好股票的状态,列出状态转移方程即可

 121. 买卖股票的最佳时机

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

示例 1:

输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
     注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:

输入:prices = [7,6,4,3,1]
输出:0

#include "bits/stdc++.h"

using namespace std;

class Solution {
public:
    int maxProfit_dp(vector<int>& prices) {
        if (prices.size() == 0) 
            return 0;
        //dp[i]在[0--i]天交易取得的最大值
        int dp[prices.size()] = {0}, min = prices[0];
        for(int i = 1; i < prices.size(); i++)
        {
            dp[i] = dp[i - 1] > prices[i] - min ? dp[i - 1] : prices[i] - min;
            min = min < prices[i] ? min : prices[i];
        }
        return dp[prices.size() - 1];
    }
    int maxProfit_greedy(vector<int>& prices) {
        //记录最低价格,若当前价格大于最低价格,说明可以交易
        //否则则更新最低价格
        int min_price = prices[0], ans = 0;
        for(int i = 1; i < prices.size(); i++){
            if(prices[i] > min_price)
                //卖出股票
                ans = max(ans, prices[i] - min_price);
            else
                //更新最低价
                min_price = prices[i];
        }
        return ans;
    }
};

122. 买卖股票的最佳时机 II

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润 。

示例 1:

输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
     随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。
     总利润为 4 + 3 = 7 。
示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
     总利润为 4 。
示例 3:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。

#include "bits/stdc++.h"

using namespace std;


class Solution {
public:
    int maxProfit(vector<int>& prices) {
        //贪心算法在局部最低买入,在局部最高卖出
        //实际上是在所有涨价期间买入卖出即可
        int sum = 0;
        for(int i = 1; i < prices.size(); i++){
            if(prices[i] > prices[i-1])
                sum += (prices[i] - prices[i-1]);
        }
        return sum;
    }
    int maxProfit_dp(vector<int>& prices) {
        /*动态规划解法:
        dp[i][0]:在第i天交易完成之后持有股票的最大收入
        dp[i][1]:在第i天交易完成之后没有股票的最大收入
        dp[i][0] = max(dp[i-1][0], dp[i-1][1] + nums[i])//前一天本身就没有股票或者当天卖了股票之后没有股票
        dp[i][1] = max(dp[i-1][1], dp[i-1][0] - nums[i])//前一天本身就有股票或者当天买入股票
        */
       int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(2, 0));
        dp[0][0] = -prices[0], dp[0][1] = 0;
        for(int i = 1; i < n; i++){
            dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i]);
        }
        return max(dp[n-1][0], dp[n-1][1]);
    }
};

 123. 买卖股票的最佳时机 III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
     随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。   
     注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。   
     因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:

输入:prices = [7,6,4,3,1] 
输出:0 
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。
示例 4:

输入:prices = [1]
输出:0

#include "bits/stdc++.h"

using namespace std;

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        /*拆分为两个动态规划问题
        dp1[i]:第一次交易获取的最大值(第[0,i]天)
        dp1[i] = max(max_profit, price[i]-min_price)
        max_profit = max(dp1[i], max_profit)
        min_price = min(min_price, price[i])
        dp2[i]:第二次交易获取的最大值(倒过来看从第i天到最后一天的最大利润)
        dp2[i] = max(max_profit, max_price - price[i])
        max_profit = max(dp2[i], max_profit)
        max_price = max(max_price, price[i])
        res = max(dp1+dp2)[i]
        */
        int n = prices.size();
        vector<int> dp1(n, 0);
        vector<int> dp2(n, 0);
        int max_profit = INT_MIN, min_price = prices[0], max_price = prices[n-1];
        for(int i = 0; i < n; i++){
            dp1[i] = max(max_profit, prices[i]-min_price);
            max_profit = max(max_profit, dp1[i]);
            min_price = min(min_price, prices[i]);
        }
        max_profit = INT_MIN;
        for(int i = n-1; i >= 0; i--){
            dp2[i] = max(max_profit, max_price-prices[i]);
            max_profit = max(max_profit, dp2[i]);
            max_price = max(max_price, prices[i]);
        }
        max_profit = INT_MIN;
        for(int i = 0; i < n; i++)
            max_profit = max(max_profit, dp1[i]+dp2[i]);
        return max_profit;
    }
     int maxProfit_dp(vector<int>& prices) {
        /*
        另解
        dp[i][j]:i代表天数、j代表状态后所剩金额最大值
        每个状态表示的都是到目前为止的状态
        0:到目前为止无任何交易
        dp[i][0] = dp[i-1][0]
        1:买入第一支股票的状态:前一天就买入了或者现在买入
        dp[i][1] = max(dp[i-1][0]-prices[i], dp[i-1][1])
        2:卖出第一支股票:现在卖出的,前一天就卖出了
        dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i])
        3:买入第二支股票:前一天就买入了或者现在买入
        dp[i][3] = max(dp[i-1][3], dp[i-1][2]-prices[i])
        4:卖出第二支股票:前一天就卖出或者现在卖出
        dp[i][4] = max(dp[i-1][4], dp[i-1][3]+prices[i])
        */
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(5, 0));
        dp[0][1] = -1 * prices[0];
        dp[0][3] = dp[0][1];
        for(int i = 1; i < n; i++){
            dp[i][0] = dp[i-1][0];
            dp[i][1] = max(dp[i-1][1], dp[i-1][0]-prices[i]);
            dp[i][2] = max(dp[i-1][2], dp[i-1][1]+prices[i]);
            dp[i][3] = max(dp[i-1][3], dp[i-1][2]-prices[i]);
            dp[i][4] = max(dp[i-1][4], dp[i-1][3]+prices[i]);
        }
        return dp[n-1][4];
    }
};

309. 最佳买卖股票时机含冷冻期

给定一个整数数组prices,其中第  prices[i] 表示第 i 天的股票价格 。​

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: prices = [1,2,3,0,2]
输出: 3 
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
示例 2:

输入: prices = [1]
输出: 0

一些题解思路:根据题目可知,如果采用动态规划的话,肯定要枚举第i天的一些状态(买入、卖出、是否冻结等等),同时第i天的状态肯定又能用第i-1天的状态来表示。

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        /**动态规划:多个状态,上一次选择的一些状态会构成本次操作的一些状态
        dp[i][0]:拥有股票=max(dp[i-1][0], dp[i-1][2]-nums[i]) 维持上一天拥有或者在今天买入
        dp[i][1]:不拥有股票,且接下来处于冷冻期=dp[i-1][0]+nums[i] 今天必须卖出股票
        dp[i][2]:不拥有股票,且接下来不是冷冻期=max(dp[i-1][2], dp[i-1][1])
        同时可以对状态进行压缩
        **/
        vector<vector<int>> dp(2, vector<int>(3, 0));
        dp[0][0] = -prices[0];
        for(int i = 1; i < prices.size(); i++){
            dp[1][0] = max(dp[0][0], dp[0][2]-prices[i]);
            dp[1][1] = dp[0][0] + prices[i];
            dp[1][2] = max(dp[0][2], dp[0][1]);
            dp[0][0] = dp[1][0];
            dp[0][1] = dp[1][1];
            dp[0][2] = dp[1][2];
        }
        return max(dp[1][0], max(dp[1][1], dp[1][2]));
    }
};

 其他系列

百度笔试题

#include "bits/stdc++.h"

using namespace std;

// # 百度12号第二题

# define MAX_VAL 10000000

int main(){
    int N;
    cin >> N;
    int total = N;
    vector<int> vec_a;
    while(total--){
        int a;
        cin >> a;
        vec_a.push_back(a);
    }
    vector<int> vec_b;
    total = N;
    while(total--){
        int a;
        cin >> a;
        vec_b.push_back(a);
    }
    /*
    动态规划:dp[i][0]:不对nums[i]进行魔法变换的最大操作次数
    dp[i][1]:对nums[i]进行魔法变换的最大操作次数
    dp[i][0] = dp[i-1][0]    iff : nums_a[i] > nums_a[i-1] 
             = dp[i-1][1]    iff : nums_a[i] > nums_b[i-1]
            取最小值
    dp[i][1] = dp[i-1][0] + 1 iff : nums_b[i] > nums_a[i-1]
             = dp[i-1][1] + 1 iff : nums_b[i] > nums_b[i-1]
            取最小值
    */
    vector<vector<int>> dp(N, vector<int>(2, MAX_VAL));
    dp[0][1] = 1; 
    dp[0][0] = 0;
    for(int i = 1; i < N; i++){
        if(vec_a[i] > vec_a[i-1])
            dp[i][0] = min(dp[i][0], dp[i-1][0]);
        if(vec_a[i] > vec_b[i-1])
            dp[i][0] = min(dp[i][0], dp[i-1][1]);
        if(vec_b[i] > vec_a[i-1])
            dp[i][1] = min(dp[i][1], dp[i-1][0]+1);
        if(vec_b[i] > vec_b[i-1])
            dp[i][1] = min(dp[i][1], dp[i-1][1]+1);
    }
    int num = min(dp[N-1][0], dp[N-1][1]);
    if (num == MAX_VAL)
        cout << -1 << endl;
    else
        cout << num << endl;
}

 1143. 最长公共子序列

 

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值