著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的 N 个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?
例如给定 N=5, 排列是1、3、2、4、5。则:
● 1 的左边没有元素,右边的元素都比它大,所以它可能是主元;
● 尽管 3 的左边元素都比它小,但其右边的 2 比它小,所以它不能是主元;
● 尽管 2 的右边元素都比它大,但其左边的 3 比它大,所以它不能是主元;
● 类似原因,4 和 5 都可能是主元。
因此,有 3 个元素可能是主元。
输入格式:
输入在第 1 行中给出一个正整数 N(≤ 105 ); 第 2 行是空格分隔的 N 个不同的正整数,每个数不超过 109 。
输出格式:
在第 1 行中输出有可能是主元的元素个数;在第 2 行中按递增顺序输出这些元素,其间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
5
1 3 2 4 5
输出样例:
3
1 4 5
思路:
接收的数组分别储存在int a[N]
、复制到int b [N]
,用 max
记录已输入的元素中的最大值,若接下来输入的数据 a[i]
小于已输入的最大值,a[i]
不能做主元
输入完成后,对 a[N]
排序,若排序后 a[i]
的下标发生了变化,a[i]
不能做主元,同时改变 count
和对应的 ic[i]
的值
#include<iostream>
#include<algorithm>
const int N = 1e5 + 10;
int a[N] = { 0 }, b[N] = { 0 };
bool ic[N] = { false }, op = false;
using namespace std;
int main() {
int count = 0, max = 0, i, n;
cin >> n;
for (i = 0; i < n; i++) {
cin >> a[i];
b[i] = a[i];
if (a[i] > max) {
ic[i] = true;
max = a[i];
count++;
}
}
sort(a, a + n);
for (i = 0; i < n; i++)
if (ic[i]&&a[i] != b[i]) {
ic[i] = false;
count--;
}
cout << count << endl;
for (i = 0; i < n; i++)
if (ic[i] && op)
cout << " " << a[i];
else if (ic[i] && !op) {
cout << a[i];
op = true;
}
cout << endl;
return 0;
}