【python基础】省略号...的用法

本文介绍Python中省略号(…)的含义及三种主要用途:作为类型提示、在函数内作为pass的替代以及在NumPy中的高级索引应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载自:https://zhuanlan.zhihu.com/p/489862322


省略号(…)在Python有着广泛的应用,尤其是一些底层代码中,经常能看到大量的省略号(…)。如下图所示就是type这个类的底层代码,可以看到非常多的省略号(…)。这些省略号(…)是什么意思?又有哪些用法呢?本文试图分析一二。
在这里插入图片描述

1. 省略号是什么?

省略号(…)的底层代码很简单,如下所示。@final装饰器的意思是该类不允许被继承。

# Actually the type of Ellipsis is <type 'ellipsis'>, but since it's
# not exposed anywhere under that name, we make it private here.
@final
class ellipsis: ...

Ellipsis: ellipsis

而如下的代码的输出结果说明:Ellipsis就是省略号(…),省略号(…)就是Ellipsis。
而Ellipsis是ellipsis类的唯一实例(singleton object),这种唯一实例的模式也称为单例模式(singleton pattern)[1]。

print(type(...))            # output: <class 'ellipsis'>
print(Ellipsis == ...)      # True
print(...)                  # Ellipsis

2. 省略号三种用法

类型提示

关于Python中的类型提示(type hints)详见【Python】作为动态语言,Python中的“类型声明”有什么用?。省略号(…)在类型提示中经常被使用,如

from typing import Callable, Tuple

Callable[..., int]  # 输入参数随意,返回值为int
Tuple[int, ...]     # int组成的元组

函数内部,相当于pass

以下两个写法没有太大区别

def foo1(): pass
def foo2(): ...

numpy中的索引

import numpy as np

arr = np.random.random((2,2,2))
print(arr)
print(arr[..., 0, 0])
import numpy as np
 
a = np.array([[[1, 2, 21], [3, 4, 34]],
              [[5, 6, 56], [7, 8, 78]]])
print("a:",a)
print('a.shape:', a.shape)
print("-"*10)
 
'''
[...,0:2]针对的是最后一个维度的下标为0、1的元素
'''
b = a[..., 0:2]
print('b :', b)
print('shape.b:', b.shape)
print("-"*10)
 
'''
[...,1:2]针对的是最后一个维度的下标为1的元素
'''
c = a[..., 1:2]
print('c :', c)
print('shape.c:', c.shape)
print("-"*10)
 
'''
[...,1]是相当于[-1],倒数第1个维度(-2,-1,-0)
'''
d = a[..., 1]
print('d :', d)
print('shape.d:', d.shape)


运行结果如下:

		a: [[[ 1  2 21]
		  [ 3  4 34]]
		 
		 [[ 5  6 56]
		  [ 7  8 78]]]
		a.shape: (2, 2, 3)
		----------
		b : [[[1 2]
		  [3 4]]
		 
		 [[5 6]
		  [7 8]]]
		shape.b: (2, 2, 2)
		----------
		c : [[[2]
		  [4]]
		 
		 [[6]
		  [8]]]
		shape.c: (2, 2, 1)
		----------
		d : [[2 4]
		 [6 8]]
		shape.d: (2, 2)
<think>好的,用户想知道如何在Python中实现输出省略号的功能。我需要先理解用户的具体需求。他们可能是在打印数据时遇到内容被省略的情况,想要控制输出的显示方式。 首先,我应该回忆Python中哪些情况会导致输出被截断,比如使用pandas的DataFrame时,或者numpy数组。根据提供的引用内容,用户提到的几种解决方法,包括设置pandas的选项和调整numpy的打印选项。 接下来,需要分情况讨论。用户可能是在不同的库中遇到了问题,比如pandas、numpy或者普通的print语句。例如,引用3和5提到pandas默认输出100行,超过部分显示省略号,可以通过set_option调整。引用4和5提到numpy的set_printoptions方法。还有普通长列表在打印时被截断的情况,可以通过sys模块修改显示选项。 此外,用户可能希望知道如何主动输出省略号,而不仅仅是解决被自动截断的问题。这时候可以直接用print("...")或者用字符串格式化来添加。 需要将解决方法分步骤说明,确保清晰。可能需要提到不同库的具体设置方法,以及通用的解决方案。还要注意代码示例的正确性,比如正确导入库,设置参数的代码位置等。 还要检查引用的正确性,确保每个解决方案都有对应的引用标注。例如,pandas的设置方法引用3、5,numpy的引用4,sys模块的引用可能没有直接提到,但可以归为通用方法。 最后,提醒用户在实际应用时权衡显示效果和性能,避免设置过大导致内存问题。总结不同场景下的解决方法,帮助用户根据具体情况选择合适的方式。</think>在Python中实现输出省略号的功能,通常涉及两种场景: 1. **主动输出省略号**:直接在代码中使用`print("...")`显式输出 2. **控制数据过长时的自动省略**:解决打印数据时因默认显示限制导致的省略现象 以下是具体实现方法: --- ### 一、主动输出省略号(直接输出) 直接在代码中使用字符串包含省略号: ```python print("加载中...") # 输出结果为:加载中... ``` --- ### 二、解决自动省略问题 当使用`pandas`、`numpy`等库时,打印长数据会因默认显示设置被截断为省略号。需通过修改库的默认参数实现完整输出: #### 1. 针对`pandas`的DataFrame ```python import pandas as pd # 设置显示行数和列宽无限制 pd.set_option('display.max_rows', None) # 显示所有行[^3][^5] pd.set_option('display.max_columns', None) # 显示所有列 pd.set_option('display.width', None) # 自动换行适应宽度 ``` #### 2. 针对`numpy`数组 ```python import numpy as np # 设置打印阈值无限制 np.set_printoptions(threshold=np.inf) # 完全显示数组内容[^4] ``` #### 3. 通用长列表/字符串的省略控制 Python默认会截断长列表(如`[1, 2, 3, ..., 99, 100]`),可通过`sys`模块修改: ```python import sys sys.setrecursionlimit(10000) # 设置递归深度(非必须) # 设置打印选项 sys.displayhook = lambda x: print(repr(x)[:100] + '...' if len(repr(x)) > 100 else x) # 自定义截断长度 ``` --- ### 三、示例对比 **默认输出(有省略)**: ```python import pandas as pd df = pd.DataFrame({'data': range(1, 101)}) print(df) # 输出时中间部分显示为... ``` **设置后输出(无省略)**: ```python pd.set_option('display.max_rows', None) print(df) # 显示全部100行数据 ``` --- ### 注意事项 - 修改全局参数可能导致控制台输出过长,建议仅在调试时使用 - 对超大数据(如百万行)谨慎设置`None`,可能引发内存问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值