[ABC325F] Sensor Optimization Dilemma 题解
这个题用动态规划来做。
设 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示覆盖了前 i i i 个线段,用了 j j j 个传感器 1,需要最少多少传感器 2。
第一层循环枚举已经覆盖前
i
i
i 个线段,第二层循环枚举传感器 1 已经用了
j
j
j 个,第三层循环枚举用
p
p
p 个传感器 1 去覆盖线段,然后定义一个 x
,表示现在都使用传感器 1 覆盖剩余多少,接下来,若 x>0
,那么还需要传感器 2 来覆盖,用 need
来存储这个数量。
代码:
#include <bits/stdc++.h>
#define int long long
using namespace std;
int n;
const int N = 110;
int a[N];
const int M = 3;
int l[M],c[M],k[M];
int ret;
const int K = 1010;
int dp[K][K];
signed main()
{
cin >> n;
memset(dp,0x3f,sizeof(dp));
for (int i = 1;i <= n;i++) cin >> a[i];
for (int i = 1;i <= 2;i++) cin >> l[i] >> c[i] >> k[i];
dp[0][0] = 0;
for (int i = 0;i < n;i++)
for (int j = 0;j <= k[1];j++)
for (int p = 0;p+j <= k[1];p++)
{
int need = 0,x = a[i+1] - l[1]*p;
if (x > 0) need = (x-1)/l[2]+1;
dp[i+1][j+p] = min(dp[i+1][j+p],dp[i][j]+need);
}
ret = 1e18;
for (int i = 0;i <= k[1];i++) if (dp[n][i] <= k[2]) ret = min(ret,c[1]*i+dp[n][i]*c[2]);
cout << (ret == 1e18 ? -1 : ret);
return 0;
}