ABC325F题解

本文介绍了如何使用动态规划方法解决SensorOptimization问题,涉及计算覆盖前i个线段所需的最少传感器1和传感器2数量,通过三层循环实现并优化dp数组。
摘要由CSDN通过智能技术生成

[ABC325F] Sensor Optimization Dilemma 题解

这个题用动态规划来做。

d p [ i ] [ j ] dp[i][j] dp[i][j] 表示覆盖了前 i i i 个线段,用了 j j j 个传感器 1,需要最少多少传感器 2。

第一层循环枚举已经覆盖前 i i i 个线段,第二层循环枚举传感器 1 已经用了 j j j 个,第三层循环枚举用 p p p 个传感器 1 去覆盖线段,然后定义一个 x ,表示现在都使用传感器 1 覆盖剩余多少,接下来,若 x>0,那么还需要传感器 2 来覆盖,用 need 来存储这个数量。

代码:

#include <bits/stdc++.h>
#define int long long
using namespace std;
int n;
const int N = 110;
int a[N];
const int M = 3;
int l[M],c[M],k[M];
int ret;
const int K = 1010;
int dp[K][K];
signed main()
{
	cin >> n;
	memset(dp,0x3f,sizeof(dp));
	for (int i = 1;i <= n;i++) cin >> a[i];
	for (int i = 1;i <= 2;i++) cin >> l[i] >> c[i] >> k[i];
	dp[0][0] = 0;
	for (int i = 0;i < n;i++)
		for (int j = 0;j <= k[1];j++)
			for (int p = 0;p+j <= k[1];p++)
			{
				int need = 0,x = a[i+1] - l[1]*p;
				if (x > 0) need = (x-1)/l[2]+1;
				dp[i+1][j+p] = min(dp[i+1][j+p],dp[i][j]+need);
			}
	ret = 1e18;
	for (int i = 0;i <= k[1];i++) if (dp[n][i] <= k[2]) ret = min(ret,c[1]*i+dp[n][i]*c[2]);
	cout << (ret == 1e18 ? -1 : ret);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值