Spring AOP(一) AOP概念

AOP(面向切面编程)是Spring框架的重要组成部分,它通过预编译方式和运行期动态代理实现程序功能的统一维护,降低业务逻辑耦合度,提高重用性和开发效率。AOP可以用于性能监视、事务管理、安全检查等功能。

AOP(Aspect Oriented Programming) 面向切面编程
是通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术。AOP是OOP(Object Oriented Programming)的延续,是软件开发的一个热点,也是Spring框架中的一个重要内容,是函数式编程的一种衍生范型。利用AOP可以对业务逻辑的各个部分进行隔离,从而使得业务逻辑各部分之间的耦合度降低,提高程序的重用性,同时提高了开发的效率。

AOP采取横向抽取机制,取代了传统纵向继承体系重复性代码。
AOP可以帮我们实现性能监视,事务管理,安全检查,缓存等操作。
Spring AOP使用纯Java实现,不需要专门的编译过程和类加载器,在运行期通过代理方式向目标类织入增强代码。

//纵向继承:
//比如向运行save之前进行权限验证
public class Car{
	public void checkPrivilege(){
		System.out.println("权限验证。。。。");
	}
}

public class CarOne extends Car{
	public void save(){
		checkPrivilege();
		System.out.prinln("save.......");	
	}
}

而Spring AOP通过对目标类通过动态代理方式产生一个代理类,我们可以在代理类对save方法进行权限验证。
AOP相关术语:
JoinPoint(连接点):是指那些被拦截的点,在Spring中,这些点是方法,因为Spring只支持方法类型的连接点。
Pointcut(切入点):是我们要对哪些Joinpoint进行拦截的定义。
Advice(通知/增强):是指拦截到Joinpoint之后所要做的事。通知分为前置通知,后置通知,异常通知,环绕通知(切面要完成的功能),最终通知。
Introduction(引介):是一种特殊的通知,在不修改类代码的前提下,Introduction可以在运行期为类动态地添加一些方法或者Fileds。
Target(目标对象):代理的目标对象。
Wearing(织入):是指把增强应用到目标对象来创建新的代理对象的过程,Spring采用动态代理织入,而AspectJ采用编译器织入和类加载期织入。
Proxy(代理):一个类被AOP织入增强后,就产生一个结果代理类。
Aspect(切面):是切入点和通知(引介)的结合

【源码免费下载链接】:https://renmaiwang.cn/s/2gdnj 《R语言数据挖掘方法及应用》由薛薇编写而成的本系统阐述R语言在数据挖掘领域前沿技术的著作。该书旨在指导读者学会使用R语言进行高效、实用的数据分析与建模工作,涵盖了从理论基础到实践操作的全过程。作为款功能强大且开源的统计计算和图形处理平台,R语言凭借其丰富的工具库和社区支持,在数据分析与可视化方面展现出显著优势。在数据挖掘领域,R语言提供了包括`caret`、`randomForest`、`tm`、`e1071`等广泛使用的专用包,这些工具能够帮助用户更便捷地进行数据预处理、特征选择、模型构建和结果评估。全书首先介绍R语言的基本知识体系,涵盖环境配置与安装方法、基础语法规范以及常见数据类型分析等内容。这些基础知识是开展后续数据分析工作的必备技能,通过学习可以快速掌握R语言的核心功能。随后章节深入讲解了数据挖掘的主要概念与流程,包括数据清洗、转换整理和探索性分析等环节,同时详细阐述了分类、聚类、关联规则挖掘及预测等多种典型任务的具体实施方法。这些内容有助于读者全面理解数据挖掘的整体架构及其核心工作步骤。在应用实践部分,薛薇老师结合真实案例展示了R语言在实际业务场景中的具体运用,例如市场细分分析、客户流失预测以及个性化推荐系统等。通过这些案例研究,读者可以深入学习如何利用相关工具包解决实际问题,并提升数据分析能力。此外,书中配套的“案例数据集”和“代码资源”为读者提供了实践操作的机会,使理论知识能够更好地转化为动手技能。通过实际操作分析,读者可以加深对R语言数据挖掘方法的理解并灵活运用。总之,《R语言数据挖掘方法及应用》是部全面讲解R语言在数据分析与建模领域的教材,无论你是刚开始学习的新人还是经验丰富的专业人士,都能从中获益匪浅。通过深入研读此书,你可以掌握R语言的数据挖掘技巧,并将其应用到实
内容概要:本文提出了种基于改进粒子滤波算法的无人机三维航迹预测方法,并通过Matlab代码实现仿真验证。该方法针对传统粒子滤波在无人机轨迹预测中存在的粒子退化和计算复杂度高等问题,引入优化策略提升滤波精度与效率,有效提高了对无人机运动轨迹的非线性、非高斯环境下的预测能力。文中详细阐述了算法原理、模型构建流程及关键步骤,包括状态转移建模、观测方程设计、重采样优化等,并结合三维空间中的实际飞行轨迹进行仿真实验,验证了所提方法相较于标准粒子滤波在位置预测误差和收敛速度方面的优越性。; 适合人群:具备定信号处理、导航估计算法基础,熟悉Matlab编程,从事无人系统、智能交通、航空航天等相关领域研究的研究生或科研人员; 使用场景及目标:①应用于无人机实时轨迹预测与状态估计系统中,提升飞行安全性与自主性;②为复杂环境下非线性动态系统的建模与滤波算法研究提供技术参考;③【预测】改进粒子滤波的无人机三维航迹预测方法(Matlab代码实现)支持后续扩展至多无人机协同跟踪与避障系统的设计与仿真; 阅读建议:建议结合Matlab代码逐模块分析算法实现细节,重点关注粒子滤波的改进机制与三维可视化结果对比,同时可尝试替换不同运动模型或噪声条件以深入理解算法鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值