第一章-配置环境
1. 创建新的Python环境——Anaconda
Python的开发环境中拥有诸如Numpy、Pandas、Matplotlib等功能齐全的库,能够为数据分析工作提供极大的便利,不过,库的管理及版本问题不能让数据分析人员专注于数据分析,而是将大量的时间花费在解决包配置与包冲突等问题上。
基于上述需求,可以使用Anaconda进行开发,它是一个集成了大量常用扩展包的环境,能够避免包配置或兼容等各种问题。
1.1 Anaconda发行版本概述
Anaconda是一个可以便捷获取和管理包,同时对环境进行统一管理的发型版本,它包含了conda、python在内的超过180个科学包及其依赖项。
Anaconda发行版本具有以下几个特点:
- 包含了众多流行的科学、数学、工程和数据分析的python库。
- 完全开源和免费。
- 额外的加速和优化是收费的,但对于学术用途,可以申请免费的License。
- 全平台支持Linux、windows、MacOS,可以自由切换Python版本。
在此基础上,推荐安装Anaconda进行学习。
1.2 Anaconda安装
进入到官网:Anaconda官网
下载完成后进入安装。
一路默认安装。
若是出现上面的提醒则是安装路径有空格,可能会导致之后使用错误,所以尽量安装路径不要带有中文或空格等。
默认安装就好, 上述选项依次是:
- 创建快捷方式
- 将Anaconda3加入到系统环境变量中, 但是不推荐
- 将Anaconda的Python版本设为默认, 推荐.
- 清理缓存.
等待安装…
1.3 通过Anaconda管理Python包
Anaconda集成了常用的扩展包,能够方便的对这些扩展包进行管理, 比如安装和卸载包, 这些操作都需要依赖 conda. conda 是一个在 Windows, MacOS 和 Linux 上运行的开源软件包管理系统和环境管理系统, 可以快速的安装, 运行和更新软件包及其依赖库.
在 Windows 系统下, 用户可以打开 Anaconda Prompt 工具, 然后在 Anaconda Prompt 中通过命令检测 conda 是否被安装, 命令如下.
(base) C:\Users\25361>conda --version
conda 24.11.3
也可以配置环境变量, 重启电脑后, 在 cmd 终端中也可以使用 conda.
**注意: **如果希望快速了解如何使用 conda 命令管理包, 则可以在终端输入 conda -h
或 conda --help
命令来查看帮助文档.
conda 命令的常见操作主要分为以下几种:
-
查看当前环境下的包信息
使用
list
命令可以获取当前环境中已经安装的包信息, 命令格式如下.(base) C:\Users\25361>conda list # packages in environment at E:\anaconda3: # # Name Version Build Channel _anaconda_depends 2024.10 py312_mkl_0 defaults aiobotocore 2.12.3 py312haa95532_0 defaults aiohappyeyeballs 2.4.0 py312haa95532_0 defaults ...
执行上述命令后, 终端会显示当前环境下已经安装的包名以及版本号.
-
查找包(远程查找, 不是查找本地)
使用
search
命令可以查找可供安装的包, 命令格式如下.conda search --full-name 包的全名
上述命令中,
--full-name
为精确查找的参数, 后面紧跟的是包的全名. 例如,查找全名为Python
的包有些版本可供安装, 示例命令如下.(base) C:\Users\25361>conda search --full-name python Loading channels: done # Name Version Build Channel python 2.6.8 5 anaconda/pkgs/free python 2.6.8 6 anaconda/pkgs/free python 2.6.9 0 anaconda/pkgs/free ...
-
安装包
使用
install
命令可以安装包, 如果希望在指定的环境中进行安装, 则可以在install
命令的后面显式地指定环境名称, 命令格式如下.conda install --name env_name packgae_name
上述命令中,
env_name
参数表示包安装的环境名称,package_name
表示将要安装的包名称, 例如在 python3 环境中安装 pandas 包, 示例命令如下.conda install --name python3 pandas
**注意: **这里的
python3
不是版本, 是利用 conda 创建的一个独立的虚拟 python 环境, 具体的利用 conda 创建虚拟环境可查询网络自行了解.如果要在当前的环境中安装包, 则可以直接使用
install
命令进行安装, 命令格式如下.conda install package_name
执行上述命令, 会在当前的环境下安装
package_name
包.若无法使用
conda install
命令进行安装时,则可以使用pip
命令进行咱庄. 值得一提的是,pip
只是包管理器, 它无法对环境进行管理, 所以要想在指定的环境中使用pip
安装包, 需要先切换到指定环境中使用pip
命令进行安装, (pip
可以先切换到清华的镜像源, 这样下载更快).pip
命令格式如下.pip install package_name
例如, 使用
pip
命令安装名称为 see 的包, 示例如下.pip install see
-
卸载包
如果要在指定的环境中卸载包, 则可以在指定环境下使用
remove
命令进行移除, 命令格式如下.conda remove --name env_name package_name
例如, 卸载名为 python3 环境下的 pandas 包, 示例命令如下.
conda remove --name python3 pandas
同样, 如果要卸载当前环境中的包, 可以直接使用
remove
命令进行卸载, 命令格式如下.conda remove package_name 或 pip uninstall package_name
-
更新包
更新当前环境下所有包, 可使用如下命令完成.
conda update --all
如果只想更新某个包或某些包, 则直接在
update
命令的后面加上包名即可, 多个包之间使用空格隔开, 示例命令如下.conda update numpy #更新 numpy 包 conda update pandas numpy matplotlib #更新多个包
**注意: **Miniconda 是最小的 conda 安装环境, 只包含最基本的 python 与 conda 以及相关的必须依赖项. 对于空间要求严格的用户, Miniconda 是一种选择, 它只包含了最基本的库, 其他的库需要自己手动安装.
2 启用 Jupyter Notebook
Jupyter Notebook (交互式笔记本) 是一个支持实时代码, 数学方程, 可视化和 Markdown 的 Web 应用程序, 它支持 40 多种编程语言. 对于数据分析来说, jupyter Notebook 最大的优点是可以重现整个分析过程, 并将说明文字, 代码, 图表, 公式和结论都整合在一个文档中, 用户可以通过电子邮件, Dropbox, Github 和 Jupyter Notebook Viewer 将分析结构分享给其他人.
2.1 启动 Anaconda 自带的 jupyter notebook
只要当前系统中安装了 Anaconda 环境, 则默认就已经拥有的了 Jupyter Notebook, 不需要再另行下载和安装. 在 windows 系统的 “开始” 菜单中, 打开 Anaconda3 目录, 找到并单击 “Jupyter Notebook”, 弹出如下启动窗口.
同时, 系统默认的浏览器会弹出进入的界面.
这是在浏览器打开的 Jupyter Notebook 的主界面, 默认的打开和保存的路径为C:\Users\当前用户名.
除了上述的启动方式外, 还可以用命令行打开, 这种方式可以控制 Jupyter Notenook 的显示和保存路径, 是推荐的启动方式. 在命令提示符中先进入对应的目录, 然后在此目录下输入 Jupyter Notebook
后按 【回车】
键打开, 这样一来, 显示工程目录和保存 ipynb 文件都将在此目录下进行.
2.2 使用 Pycharm 运行 Jupyter Notebook
由于 Pycharm 优秀的提示词和开箱即用的方便, 故之后的开发环境都在 Pycharm 中进行, 对于具体的实现方式, 网络中有大量的经验教程, 可自行在网络中查询, 本文不再赘述. 最终的实现效果如下.