第一章-配置环境

第一章-配置环境

1. 创建新的Python环境——Anaconda

​ Python的开发环境中拥有诸如Numpy、Pandas、Matplotlib等功能齐全的库,能够为数据分析工作提供极大的便利,不过,库的管理及版本问题不能让数据分析人员专注于数据分析,而是将大量的时间花费在解决包配置与包冲突等问题上。

​ 基于上述需求,可以使用Anaconda进行开发,它是一个集成了大量常用扩展包的环境,能够避免包配置或兼容等各种问题。

1.1 Anaconda发行版本概述

​ Anaconda是一个可以便捷获取和管理包,同时对环境进行统一管理的发型版本,它包含了conda、python在内的超过180个科学包及其依赖项。

​ Anaconda发行版本具有以下几个特点:

  1. 包含了众多流行的科学、数学、工程和数据分析的python库。
  2. 完全开源和免费。
  3. 额外的加速和优化是收费的,但对于学术用途,可以申请免费的License。
  4. 全平台支持Linux、windows、MacOS,可以自由切换Python版本。

在此基础上,推荐安装Anaconda进行学习。

1.2 Anaconda安装

进入到官网:Anaconda官网

image-20250423112033122

下载完成后进入安装。

image-20250423112447084

一路默认安装。

若是出现上面的提醒则是安装路径有空格,可能会导致之后使用错误,所以尽量安装路径不要带有中文或空格等。

默认安装就好, 上述选项依次是:

  1. 创建快捷方式
  2. 将Anaconda3加入到系统环境变量中, 但是不推荐
  3. 将Anaconda的Python版本设为默认, 推荐.
  4. 清理缓存.

image-20250423113542349

等待安装…

image-20250423115447026

1.3 通过Anaconda管理Python包

​ Anaconda集成了常用的扩展包,能够方便的对这些扩展包进行管理, 比如安装和卸载包, 这些操作都需要依赖 conda. conda 是一个在 Windows, MacOS 和 Linux 上运行的开源软件包管理系统和环境管理系统, 可以快速的安装, 运行和更新软件包及其依赖库.

​ 在 Windows 系统下, 用户可以打开 Anaconda Prompt 工具, 然后在 Anaconda Prompt 中通过命令检测 conda 是否被安装, 命令如下.

image-20250423142523861

(base) C:\Users\25361>conda --version
conda 24.11.3

​ 也可以配置环境变量, 重启电脑后, 在 cmd 终端中也可以使用 conda.

​ **注意: **如果希望快速了解如何使用 conda 命令管理包, 则可以在终端输入 conda -hconda --help 命令来查看帮助文档.

​ conda 命令的常见操作主要分为以下几种:

  1. 查看当前环境下的包信息

    使用 list 命令可以获取当前环境中已经安装的包信息, 命令格式如下.

    (base) C:\Users\25361>conda list
    # packages in environment at E:\anaconda3:
    #
    # Name                    Version                   Build  Channel
    _anaconda_depends         2024.10             py312_mkl_0    defaults
    aiobotocore               2.12.3          py312haa95532_0    defaults
    aiohappyeyeballs          2.4.0           py312haa95532_0    defaults
    ...
    

    执行上述命令后, 终端会显示当前环境下已经安装的包名以及版本号.

  2. 查找包(远程查找, 不是查找本地)

    使用 search 命令可以查找可供安装的包, 命令格式如下.

    conda search --full-name 包的全名
    

    上述命令中, --full-name 为精确查找的参数, 后面紧跟的是包的全名. 例如,查找全名为 Python 的包有些版本可供安装, 示例命令如下.

    (base) C:\Users\25361>conda search --full-name python
    Loading channels: done
    # Name                       Version           Build  Channel
    python                         2.6.8               5  anaconda/pkgs/free
    python                         2.6.8               6  anaconda/pkgs/free
    python                         2.6.9               0  anaconda/pkgs/free
    ...
    
  3. 安装包

    使用 install 命令可以安装包, 如果希望在指定的环境中进行安装, 则可以在 install 命令的后面显式地指定环境名称, 命令格式如下.

    conda install --name env_name packgae_name
    

    上述命令中, env_name 参数表示包安装的环境名称, package_name 表示将要安装的包名称, 例如在 python3 环境中安装 pandas 包, 示例命令如下.

    conda install --name python3 pandas
    

    **注意: **这里的 python3 不是版本, 是利用 conda 创建的一个独立的虚拟 python 环境, 具体的利用 conda 创建虚拟环境可查询网络自行了解.

    如果要在当前的环境中安装包, 则可以直接使用 install 命令进行安装, 命令格式如下.

    conda install package_name
    

    执行上述命令, 会在当前的环境下安装 package_name 包.

    若无法使用 conda install 命令进行安装时,则可以使用 pip 命令进行咱庄. 值得一提的是, pip只是包管理器, 它无法对环境进行管理, 所以要想在指定的环境中使用 pip 安装包, 需要先切换到指定环境中使用 pip 命令进行安装, (pip 可以先切换到清华的镜像源, 这样下载更快). pip 命令格式如下.

    pip install package_name
    

    例如, 使用 pip 命令安装名称为 see 的包, 示例如下.

    pip install see
    
  4. 卸载包

    如果要在指定的环境中卸载包, 则可以在指定环境下使用 remove 命令进行移除, 命令格式如下.

    conda remove --name env_name package_name
    

    例如, 卸载名为 python3 环境下的 pandas 包, 示例命令如下.

    conda remove --name python3 pandas
    

    同样, 如果要卸载当前环境中的包, 可以直接使用 remove 命令进行卸载, 命令格式如下.

    conda remove package_name 或
    pip uninstall package_name
    
  5. 更新包

    更新当前环境下所有包, 可使用如下命令完成.

    conda update --all
    

    如果只想更新某个包或某些包, 则直接在 update 命令的后面加上包名即可, 多个包之间使用空格隔开, 示例命令如下.

    conda update numpy	#更新 numpy 包
    conda update pandas numpy matplotlib	#更新多个包
    

    **注意: **Miniconda 是最小的 conda 安装环境, 只包含最基本的 python 与 conda 以及相关的必须依赖项. 对于空间要求严格的用户, Miniconda 是一种选择, 它只包含了最基本的库, 其他的库需要自己手动安装.

2 启用 Jupyter Notebook

​ Jupyter Notebook (交互式笔记本) 是一个支持实时代码, 数学方程, 可视化和 Markdown 的 Web 应用程序, 它支持 40 多种编程语言. 对于数据分析来说, jupyter Notebook 最大的优点是可以重现整个分析过程, 并将说明文字, 代码, 图表, 公式和结论都整合在一个文档中, 用户可以通过电子邮件, Dropbox, Github 和 Jupyter Notebook Viewer 将分析结构分享给其他人.

2.1 启动 Anaconda 自带的 jupyter notebook

​ 只要当前系统中安装了 Anaconda 环境, 则默认就已经拥有的了 Jupyter Notebook, 不需要再另行下载和安装. 在 windows 系统的 “开始” 菜单中, 打开 Anaconda3 目录, 找到并单击 “Jupyter Notebook”, 弹出如下启动窗口.

image-20250424114132365

image-20250424114410401

​ 同时, 系统默认的浏览器会弹出进入的界面.

image-20250424114546715

​ 这是在浏览器打开的 Jupyter Notebook 的主界面, 默认的打开和保存的路径为C:\Users\当前用户名.

​ 除了上述的启动方式外, 还可以用命令行打开, 这种方式可以控制 Jupyter Notenook 的显示和保存路径, 是推荐的启动方式. 在命令提示符中先进入对应的目录, 然后在此目录下输入 Jupyter Notebook 后按 【回车】键打开, 这样一来, 显示工程目录和保存 ipynb 文件都将在此目录下进行.

2.2 使用 Pycharm 运行 Jupyter Notebook

​ 由于 Pycharm 优秀的提示词和开箱即用的方便, 故之后的开发环境都在 Pycharm 中进行, 对于具体的实现方式, 网络中有大量的经验教程, 可自行在网络中查询, 本文不再赘述. 最终的实现效果如下.

image-20250424115529511

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值