- 博客(8)
- 收藏
- 关注
原创 Flink简介—大数据技术
Flink是什么?Apache Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行状态计算。国内使用Flink的企业,挺多的为什么要用Flink? 流数据更加符合生活中数据的真实性 传统的数据架构均是基于有限数据集的 Flink可以实现低延迟、高吞吐、结果的准确性和良好的容错性 哪些行业中需要处理流数据? 电商和市场营销:数据报表、广告投放、业务流程需要 物联网(IOT):传感器实时数据采集和显示、实时报警,交通运输业
2021-08-18 16:22:54 322
原创 IDEA中如何安装Scala插件?
1、官网下载,找到自己的IDEA对应版本的插件:Scala插件下载链接2、在IDEA中,在左上角找到 File-> Setting-> Plugins->Install plugin from disk,选择下载的压缩包3、安装完成,可看到Plugins有了Scala大功告成!...
2021-08-17 20:10:30 2793
原创 leetcode64题 最小路径和
来源于leetcode 64题给定一个包含非负整数的mxn网格grid,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。说明:每次只能向下或者向右移动一步。示例 1:输入:grid = [[1,3,1],[1,5,1],[4,2,1]]输出:7解释:因为路径 1→3→1→1→1 的总和最小。class Solution: def minPathSum(self, grid): if not grid or not gr...
2021-07-24 23:07:31 144
原创 leetcode56题 合并区间
来源于leetcode 56题以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间。示例 1:输入:intervals = [[1,3],[2,6],[8,10],[15,18]]输出:[[1,6],[8,10],[15,18]]解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].示例2:输入:i..
2021-07-23 21:42:05 138
原创 阿里腾讯笔试—赛马的最少次数
题目25 匹马,5 条赛道,无计时工具,比出排名前三和排名前五最少场需要多少场比赛?排名前三1、首先对于25匹马,分为5组,每一组都跑一场比赛,共5场比赛,在比赛中记录马的排名。例如赛道1中,排名前五的分别为A1、A2、A3、A4、A5。我们得到每一场的最快马,分别为A1、B1、C1、D1、E1;2、将A1、B1、C1、D1、E1跑1场比赛,假设排名为A1>B1>C1>D1>E1;3、由于找到排名前三的马,因此第四名D1、第五名E1可以不考虑,排名第一确定为A1.
2021-07-11 00:39:07 154
原创 错误的常识?XGBoost缺失值处理(纠错篇)
故事是这样的。。。最近小组在招聘实习生,下面是一次面试对话我去网上一查,XGBoost的解析文章的确不少。。。为什么缺失值默认向右子树分裂呢?依据是什么呢?找遍所有的解析文章,但均未给出具体的依据或者证明,话术也竟然如此相像。。。知乎上:CSDN上:为寻找答案,仔细问了楼主,得到以下的答复:让我来慢慢破解。。。破解一:看论文仔细看了XGBoost的创始人陈天齐的论文,未说明缺失值默认向右子树分裂呀。。。论文链...
2021-06-22 10:36:21 1144 4
原创 看不懂你打我,史上最全的缺失值解析
在面试中,经常被问到,XGBoost模型支持缺失值吗?原理是什么?逻辑回归模型支持缺失值吗?随机森林支持吗?SVM呢?这么多机器学习模型,支持缺失值吗?(文末有彩蛋) 机器学习模型 是否支持缺失值 XGBoost 是 LightGBM 是 线性回归 否 逻辑回归(LR) 否 .
2021-06-20 20:17:06 561 2
原创 还有人不懂XGBoost的缺失值处理?(全面解析篇)
还有人不懂xgboost的缺失值处理?先说结论,XGBoost和LightGBM是支持缺失值的由于XGBoost和LightGBM对缺失值的处理方法是相同的,因此我们只拿XGBoost来解读建议大家看下论文,链接:https://www.kdd.org/kdd2016/subtopic/view/xgboost-a-scalable-tree-boosting-systemXGBoost是一种boosting的集成学习模型支持的弱学习器(即单个的学习器,也称基学习器)有树模型(gbtree
2021-06-20 20:02:27 3072
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人