题目
25 匹马,5 条赛道,无计时工具,比出排名前三和排名前五最少场需要多少场比赛?
排名前三
1、首先对于25匹马,分为5组,每一组都跑一场比赛,共5场比赛(记为T1-T5),在比赛中记录马的排名。例如赛道1中,排名前五的分别为A1、A2、A3、A4、A5。我们得到每一场的最快马,分别为A1、B1、C1、D1、E1;
2、将A1、B1、C1、D1、E1跑1场比赛(记为T6),假设排名为A1>B1>C1>D1>E1;
3、由于找到排名前三的马,因此第四名D1、第五名E1可以不考虑,排名第一确定为A1,接下来找出第二和第三。
- 比赛T6中A2-A5,B2-B5,C2-C5未参加比赛,由于A1>B1>C1,因此C2-C5的排名肯定大于三,可忽略;
- 由于A1>B1>C1,B2-B5中最多有一批马排名前三,即B2
- 由于A1>B1>C1,A2-A5中最多两匹马排名前三,即A2,A3
- 因此排名前三名,需要将A2,A3、B2和B1、C1比赛,刚好五匹马跑1场比赛(记为T7)。假设比赛结果排名为B1>A2>A3>B2>C1;
B1>A2>A3>B2>C1结果表明,第二名为B1,第三名为A2,则前三名为A1>B1>A2。一共需要7场比赛。
赛道1 | 赛道2 | 赛道3 | 赛道4 | 赛道5 | |
排名1 | A1 | B1 | C1 | D1 | E1 |
排名2 | A2 | B2 | C2 | D2 | E2 |
排名3 | A3 | B3 | C3 | D3 | E3 |
排名4 | A4 | B4 | C4 | D4 | E4 |
排名5 | A5 | B5 | C5 | D5 | E5 |
排名前五
思想类似