哈夫曼树(数据结构作业)

路径:在一棵树中,一个结点到另一个结点之间的通路,称为路径。图 1 中,从根结点到结点 a 之间的通路就是一条路径。

路径长度:在一条路径中,每经过一个结点,路径长度都要加 1 。例如在一棵树中,规定根结点所在层数为1层,那么从根结点到第 i 层结点的路径长度为 i - 1 。图 1 中从根结点到结点 c 的路径长度为 3。

结点的权:给每一个结点赋予一个新的数值,被称为这个结点的权。例如,图 1 中结点 a 的权为 7,结点 b 的权为 5。

结点的带权路径长度:指的是从根结点到该结点之间的路径长度与该结点的权的乘积。例如,图 1 中结点 b 的带权路径长度为 2 * 5 = 10 。

树的带权路径长度为树中所有叶子结点的带权路径长度之和。通常记作 “WPL” 。
代码:

 
void HUffumanco(HuffmanTree HT,HUffmancode HC,int n)//哈夫曼表存储在编码表HC中 
{
	HC=(HUffmancode)malloc(sizeof(char*)*(n+1));//数组的0号单元不使用,从1号单元开始所以数组HC大小为n+1 
	char *code=(char*)malloc(sizeof(char)*n);//分配临时存放编码的动态数组 
    code[n-1]='\0';//编码结束符 
	int i,start,c,p;
	for(i=1;i<=n;i++)//逐个求哈夫曼编码 
	{   //从叶子结点开始向上回溯直到根结点 
		start=n-1;//start指针指向\0 
	    c=i;
	    p=HT[c].parent;
		while(p!=0)//直到父结点为0为止
		{
			start--;//回溯一次strat向前指1个位置 
			if(HT[p].Lchild==c)//结点c是p的左孩子 
			{
				code[start]='0';
			}
			else//是p的右孩子 
			{
				code[start]='1';
			}
			c=p;
			p=HT[c].parent;
		 } 
		 HC[i]=(char*)malloc(sizeof(char)*(n-start));
		 strcpy(HC[i],code[start]);//将求得的编码从临时空间复制到HC的当前行中 
	 } 
	 free(code);//释放临时空间 
}

完整代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef char **HUffmancode;//动态分配数组存储哈夫曼树编码 
typedef struct HTNode{
	int weight;
	int parent,Lchild,Rchild;
}HTNode,*HuffmanTree;
 
void Select(HuffmanTree HT,int n,int s1,int s2)
{
	int min;//把第一个出现父结点为零的结点赋值给min,然后再将它与接下来的结点比较找到权值最小的那个结点赋给s1 
	int i;
	for(i=1;i<=n;i++)
	{
		if(HT[i].parent==0)//父结点为零的点 
		{
			min=i;
			break;
		}
	}
	for(i=min+1;i<=n;i++)
	{
		if(HT[i].parent==0&&HT[i].weight<HT[i].weight)
		{
			min=i;
		}
	}
	s1=min;//把第一个值赋给s1 
	//寻找下一个最小值,与上面的方法类似但要注意s1!=i 
	for(i=1;i<=n;i++)
	{
		if(HT[i].parent==0&&i!=s1)
	     {
	     	min=i;
	     	break;
		 }
	}
	for(i=min+1;i<=n;i++)
	{
		if(HT[i].parent==0&&HT[i].weight <HT[i].weight&&i!=s1)
		{
			min=i;
		}
	}
	s2=min;//第二个最小值 
}
 
//构建哈夫曼树
void CreateHuffmanTree(HuffmanTree HT,int n)
{
	int totalnumber=2*n+1;//哈夫曼树结点总数
	HT=(HuffmanTree)malloc(sizeof(HTNode)*(totalnumber+1));//0号位置不用 ,HT【M】表示根结点 
	int s1,s2;
	int i;
	for(i=1;i<=totalnumber;i++)
	{
		HT[i].Lchild=0;
		HT[i].parent=0;
		HT[i].Rchild=0;
	}
	for(i=1;i<=n;i++)
	{
		scanf("%d",&HT[i].weight);//输入结点的权值 
	 } //初始化结束下面开始构造哈夫曼树 
	 for(i=n+1;i<=totalnumber;i++)//已经有n个叶子结点 
	 { 
	 	Select(HT,i-1,s1,s2);//在下标为1到i-1的范围内找到权值最小的两个值,s1的权值更小 
	 	HT[i].weight=HT[i].weight+HT[i].weight ;//i的权重是s1和s2的权重之和 
	 	HT[s1].parent=i;
	 	HT[s2].parent=i;
	 	HT[i].Lchild=s1;
	 	HT[i].Rchild=s2;
	 }
 } 
 //哈夫曼编码 
void HUffumanco(HuffmanTree HT,HUffmancode HC,int n)//哈夫曼表存储在编码表HC中 
{
	HC=(HUffmancode)malloc(sizeof(char*)*(n+1));//数组的0号单元不使用,从1号单元开始所以数组HC大小为n+1 
	char *code=(char*)malloc(sizeof(char)*n);//分配临时存放编码的动态数组 
    code[n-1]='\0';//编码结束符 
	int i,start,c,p;
	for(i=1;i<=n;i++)//逐个求哈夫曼编码 
	{   //从叶子结点开始向上回溯直到根结点 
		start=n-1;//start指针指向\0 
	    c=i;
	    p=HT[c].parent;
		while(p!=0)//直到父结点为0为止
		{
			start--;//回溯一次strat向前指1个位置 
			if(HT[p].Lchild==c)//结点c是p的左孩子 
			{
				code[start]='0';
			}
			else//是p的右孩子 
			{
				code[start]='1';
			}
			c=p;
			p=HT[c].parent;
		 } 
		 HC[i]=(char*)malloc(sizeof(char)*(n-start));
		 strcpy(HC[i],code[start]);//将求得的编码从临时空间复制到HC的当前行中 
	 } 
	 free(code);//释放临时空间 
}
 
int main()
{
	int n=0;
	printf("请输入数据个数\n");
	scanf("%d",&n);
	HuffmanTree HT;
	CreateHuffmanTree(HT,n); 
//	HUffmancode HC;
//	HUffumanco(HT,HC,n);
/*	int i;
	for(i=1;i<=n;i++)
	{
		printf("数据%d的编码为:%s\n",HT[i].weight,HC[i]);
	}
	printf("\n");*/
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值