路径:在一棵树中,一个结点到另一个结点之间的通路,称为路径。图 1 中,从根结点到结点 a 之间的通路就是一条路径。
路径长度:在一条路径中,每经过一个结点,路径长度都要加 1 。例如在一棵树中,规定根结点所在层数为1层,那么从根结点到第 i 层结点的路径长度为 i - 1 。图 1 中从根结点到结点 c 的路径长度为 3。
结点的权:给每一个结点赋予一个新的数值,被称为这个结点的权。例如,图 1 中结点 a 的权为 7,结点 b 的权为 5。
结点的带权路径长度:指的是从根结点到该结点之间的路径长度与该结点的权的乘积。例如,图 1 中结点 b 的带权路径长度为 2 * 5 = 10 。
树的带权路径长度为树中所有叶子结点的带权路径长度之和。通常记作 “WPL” 。
代码:
void HUffumanco(HuffmanTree HT,HUffmancode HC,int n)//哈夫曼表存储在编码表HC中
{
HC=(HUffmancode)malloc(sizeof(char*)*(n+1));//数组的0号单元不使用,从1号单元开始所以数组HC大小为n+1
char *code=(char*)malloc(sizeof(char)*n);//分配临时存放编码的动态数组
code[n-1]='\0';//编码结束符
int i,start,c,p;
for(i=1;i<=n;i++)//逐个求哈夫曼编码
{ //从叶子结点开始向上回溯直到根结点
start=n-1;//start指针指向\0
c=i;
p=HT[c].parent;
while(p!=0)//直到父结点为0为止
{
start--;//回溯一次strat向前指1个位置
if(HT[p].Lchild==c)//结点c是p的左孩子
{
code[start]='0';
}
else//是p的右孩子
{
code[start]='1';
}
c=p;
p=HT[c].parent;
}
HC[i]=(char*)malloc(sizeof(char)*(n-start));
strcpy(HC[i],code[start]);//将求得的编码从临时空间复制到HC的当前行中
}
free(code);//释放临时空间
}
完整代码
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef char **HUffmancode;//动态分配数组存储哈夫曼树编码
typedef struct HTNode{
int weight;
int parent,Lchild,Rchild;
}HTNode,*HuffmanTree;
void Select(HuffmanTree HT,int n,int s1,int s2)
{
int min;//把第一个出现父结点为零的结点赋值给min,然后再将它与接下来的结点比较找到权值最小的那个结点赋给s1
int i;
for(i=1;i<=n;i++)
{
if(HT[i].parent==0)//父结点为零的点
{
min=i;
break;
}
}
for(i=min+1;i<=n;i++)
{
if(HT[i].parent==0&&HT[i].weight<HT[i].weight)
{
min=i;
}
}
s1=min;//把第一个值赋给s1
//寻找下一个最小值,与上面的方法类似但要注意s1!=i
for(i=1;i<=n;i++)
{
if(HT[i].parent==0&&i!=s1)
{
min=i;
break;
}
}
for(i=min+1;i<=n;i++)
{
if(HT[i].parent==0&&HT[i].weight <HT[i].weight&&i!=s1)
{
min=i;
}
}
s2=min;//第二个最小值
}
//构建哈夫曼树
void CreateHuffmanTree(HuffmanTree HT,int n)
{
int totalnumber=2*n+1;//哈夫曼树结点总数
HT=(HuffmanTree)malloc(sizeof(HTNode)*(totalnumber+1));//0号位置不用 ,HT【M】表示根结点
int s1,s2;
int i;
for(i=1;i<=totalnumber;i++)
{
HT[i].Lchild=0;
HT[i].parent=0;
HT[i].Rchild=0;
}
for(i=1;i<=n;i++)
{
scanf("%d",&HT[i].weight);//输入结点的权值
} //初始化结束下面开始构造哈夫曼树
for(i=n+1;i<=totalnumber;i++)//已经有n个叶子结点
{
Select(HT,i-1,s1,s2);//在下标为1到i-1的范围内找到权值最小的两个值,s1的权值更小
HT[i].weight=HT[i].weight+HT[i].weight ;//i的权重是s1和s2的权重之和
HT[s1].parent=i;
HT[s2].parent=i;
HT[i].Lchild=s1;
HT[i].Rchild=s2;
}
}
//哈夫曼编码
void HUffumanco(HuffmanTree HT,HUffmancode HC,int n)//哈夫曼表存储在编码表HC中
{
HC=(HUffmancode)malloc(sizeof(char*)*(n+1));//数组的0号单元不使用,从1号单元开始所以数组HC大小为n+1
char *code=(char*)malloc(sizeof(char)*n);//分配临时存放编码的动态数组
code[n-1]='\0';//编码结束符
int i,start,c,p;
for(i=1;i<=n;i++)//逐个求哈夫曼编码
{ //从叶子结点开始向上回溯直到根结点
start=n-1;//start指针指向\0
c=i;
p=HT[c].parent;
while(p!=0)//直到父结点为0为止
{
start--;//回溯一次strat向前指1个位置
if(HT[p].Lchild==c)//结点c是p的左孩子
{
code[start]='0';
}
else//是p的右孩子
{
code[start]='1';
}
c=p;
p=HT[c].parent;
}
HC[i]=(char*)malloc(sizeof(char)*(n-start));
strcpy(HC[i],code[start]);//将求得的编码从临时空间复制到HC的当前行中
}
free(code);//释放临时空间
}
int main()
{
int n=0;
printf("请输入数据个数\n");
scanf("%d",&n);
HuffmanTree HT;
CreateHuffmanTree(HT,n);
// HUffmancode HC;
// HUffumanco(HT,HC,n);
/* int i;
for(i=1;i<=n;i++)
{
printf("数据%d的编码为:%s\n",HT[i].weight,HC[i]);
}
printf("\n");*/
return 0;
}