anaconda镜像源
这里推荐 北京外国语大学镜像源,北京外国语大学镜像源是清华大学镜像源的姊妹站,都由清华大学维护,但服务器是北京外国语大学的。所以使用北京外国语大学的镜像源能避免清华大学镜像源服务器压力过大导致的速度慢等等。(北京外国语大学镜像源链接)
北外的镜像最近已经不提供anaconda服务了,现在我已经把文中的换成了西交大镜像源
具体配置可参加北京外国语大学镜像源的介绍,这里为了方便读者阅读,故而做个文抄公。
各系统都可以通过修改用户目录下的.condarc
文件来使用 TUNA 镜像源。Windows 用户无法直接创建名为.condarc
的文件,可先执行conda config --set show_channel_urls yes
生成该文件之后再修改。
channels:
- defaults
show_channel_urls: true
default_channels:
- http://mirrors.xjtu.edu.cn/anaconda/pkgs/main
- http://mirrors.xjtu.edu.cn/anaconda/pkgs/r
- http://mirrors.xjtu.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: http://mirrors.xjtu.edu.cn/anaconda/cloud
msys2: http://mirrors.xjtu.edu.cn/anaconda/cloud
bioconda: http://mirrors.xjtu.edu.cn/anaconda/cloud
menpo: http://mirrors.xjtu.edu.cn/anaconda/cloud
pytorch: http://mirrors.xjtu.edu.cn/anaconda/cloud
pytorch-lts: http://mirrors.xjtu.edu.cn/anaconda/cloud
simpleitk: http://mirrors.xjtu.edu.cn/anaconda/cloud
运行
conda clean -i
清除索引缓存,保证用的是镜像站提供的索引。
另外 因为个人来说不是很喜欢 使用conda -c conda-forge install xxx来安装三方库的,所以为了能够直接conda install xxx来安装三方库,所以做一个小小的配置。即在Anaconda Prompt (anaconda3)中运行如下命令:
conda config --add channels http://mirrors.xjtu.edu.cn/anaconda/pkgs/free/
conda config --add channels http://mirrors.xjtu.edu.cn/anaconda/cloud/pytorch/
conda config --add channels http://mirrors.xjtu.edu.cn/anaconda/pkgs/main/
conda config --add channels http://mirrors.xjtu.edu.cn/anaconda/cloud/conda-forge/
conda config --set show_channel_urls yes
然后就是一些小命令:
展示现有镜像源:
conda config --show channels
删除镜像源:
conda config --remove-key channels conda config --remove channels http://mirrors.bfsu.edu.cn/anaconda/cloud/conda-forge/
anaconda配置环境
有人可能会问了,为什么anaconda中base环境包那么多,还要自己新建环境呢?直接使用base环境不香吗?
不是不香,第一个 就是很多三方库需要有很多的依赖,还有很小众很小众的库可能需要python3.9版本 甚至python3.5版本来写的,高级版本python可能会直接报错;另一个就是三方库的依赖很多,anaconda在安装时会先审查已有的各种三方库,然后避免依赖冲突,从而求解出最合适的版本,相信大家都经历过漫长的 Solving environment: failed with initial frozen solve. Retrying with flexible solve吧🙂。所以这里建议拿到手之后先自己创建个环境,养成一个 需要什么用途就配置什么环境的习惯,而不要一个环境用到底。比如深度学习的 就用深度学习的环境,科研绘图就用科研绘图的环境,地学分析就用地学分析的环境。
base环境中 创建环境命令(这里的env_name 替换为自己自定义的环境名):
conda create -n env_name python=3.x
base环境中 删除环境命令:
conda remove --name env_name --all
base环境中 进入环境的命令:
activate env_name
退出其他环境 进入base环境 的命令:
conda deactivate
python安装三方库
一般来说 python安装三方库 最普遍使用的就是 pip安装,其次是conda安装,最最最小众的人群可能要用python setup.py install来安装。下面就简单的说一说这几个安装方法。
pip安装
pip 是一个 Python 包安装与管理工具。具体可以参见 PyPI官网 来进行搜索并安装 三方库。
最常用的命令如下:
pip install xxx #安装xxx三方库 pip uninstall xxx #卸载xxx三方库 pip list #展示当前环境内已安装的三方库列表
上述的都是在联网的情况下安装的,然而在没联网的情况下你就需要 先进入pythonlibs 里去下载python第三方库的源代码,然后进行安装。命令如下:
pip install cftime-1.0.4.2-cp35-cp35m-win_amd64.whl
这里来简要的说一下源码文件名;以 cftime-1.0.4.2-cp35-cp35m-win_amd64.whl为例。
- 其中 cftime是三方库的名称,即 cftime库
- 1.0.4.2 是三方库的版本, 即 1.0.4.2版本的cftime
- cp35和cp35m 意为 是适用于python3.5版本的cftime库,所以很多小伙伴使用源码安装安装不了就是因为 这一步,你用了python3.11,然而下载安装适用于3.5版本的源码包,当然无法安装了🙂
- win_amd64 适用于windows64位的系统。所以那些下载了tar.gz、win_32的小伙伴们 明白为什么安装不了了嘛
- 但是吧 本人是不推荐使用pip来进行安装的。因为pip安装是无法直接安装二进制库的,如果要安装的话 需要用源码安装,即上述的第二种方式。但是这样又涉及到了版本依赖问题。PS:安装过geopandas库的童鞋 应该已经开始痛苦的回忆了吧。
conda安装
不得不说 conda对与上述的pip无法直接安装二进制库,以及三方库之间的版本依赖问题有了很强的解决方案,也很简单粗暴。具体可以参见 anaconda.org 来进行搜索 某一个三方库的 安装命令。
conda安装命令主要有两种:
第一种是最常规 也是最常见的一种:
conda install xxx
而另一种 则是指定 使用conda-forge channel来进行安装,当然这里的conda-forge也可以换成其它的channel ,比如安装pytorch 则是 -c pytorch -c nvidia:
conda install -c conda-forge xxx
但是吧这种conda install如果遇到环境里库很多的话 它 会花费很长时间来 求解依赖 即Solving environment这里会花费很长时间。所以个人强烈推荐 conda的升级版 mamba来进行安装。
即新建好环境之后,先用conda install -c conda-forge mamba命令安装一下mamba。
conda install -c conda-forge mamba mamba install xxx mamba install -c conda-forge xxx
聪明的小伙伴已经看出来了,其实就是把conda 替换成mamba而已,命令都一模一样。这个的求解则会非常快,非常省时间。
python setup.py install 最最最小众的安装方法
虽然pip和conda两个方式已经能解决很多的三方库配置了,但是为什么还要有这个呢。其实就是说 pip和conda是两个平台,三方库管理平台,他们只能下载三方库管理平台发布的三方库,而一些极为小众的三方库,开发者并没有上传至三方库管平台,比如github上的一些库。因此就需要自己下载zip 或tar.gz来自行安装了。
假如我们在github上下载了 regressors-master.zip 想要安装regressors这个三方库。
然而这个库的因为源代码问题,无法从pip 或conda直接安装。故而需要我们修改setup.py来进行安装。
- 下载并解压regressors-master.zip,然后进入文件夹里,找到setup.py,然后打开 删除掉源代码67行 use_2to3=True 然后进行保存。
- 之后在Anaconda Prompt (anaconda3)切换至 setup.py 的文件目录,这样就可以使用python setup.py install 进行安装regressors这个三方库了
不喜欢或者 不用jupyter的小伙伴到这里可以划走了。下面就简单的提一下关于jupyter的一些基础配置命令。
关于jupyter notebook的一些基础配置
jupyter notebook算是一个科研工作者的利器吧,但是它的配置方面有很多坑要踩;首先就是你创建的环境里是没有jupyter内核的,所以就导致无法在jupyter里调用新建的环境。所以需要在 新建的环境 里安装 ipykernel:
conda install ipykernel
python -m ipykernel install --name env_name
然后就是 jupyter的kernel的管理
jupyter kernelspec list #展示jupyter已有的kernel列表
jupyter kernelspec remove kernel_name # 删除具体的jupyter kernel
好了 现在关于jupyter的基础配置已经结束了,至于后面关于jupyter的一些更深层次的东西,比如挂载服务器、代码自动补全、切换kernel等技巧与细节 下次再记录吧(*^_^*)