十六届蓝桥杯模拟赛第二期
1.
【问题描述】
如果一个数 p 是个质数,同时又是整数 a 的约数,则 p 称为 a 的一个质因数。
请问, 2024 的最大的质因数是多少?
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案为23
#include <bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
bool isPrime(int n) // 素数判断
{
if (n <= 1)
return false;
if (n == 2)
return true;
for (int i = 2; i <= sqrt(n); i++)
{
if (n % i == 0)
{
return false;
}
}
return true;
}
int main()
{
IOS;
int n = 2024;
int res = 0;
for (int i = 2; i < n; i++)
{
if (isPrime(i))
{
if (n % i == 0) // 约数判断
{
res = max(res, i); // 取最大的约数
}
}
}
cout << res << endl;
return 0;
}
2.
【问题描述】
对于两个整数 a, b,既是 a 的整数倍又是 b 的整数倍的数称为 a 和 b 的公倍数。公倍数中最小的正整数称为 a 和 b 的最小公倍数。
请问, 2024 和 1024 的最小公倍数是多少?
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案为259072
#include <bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int main()
{
IOS;
int a = 2024;
int b = 1024;
int len = a * b; // 确定范围
int res = 1e8;
for (int i = 1; i < len; i++) // 枚举
{
if (i % a == 0 && i % b == 0) // 判断
{
res = min(res, i); // 更新答案
}
}
cout << res << endl;
return 0;
}
3.
【问题描述】
两个数按位异或是指将这两个数转换成二进制后,最低位与最低位异或作为结果的最低位,次低位与次低位异或作为结果的次低位,以此类推。
例如,3 与 5 按位异或值为 6 。
请问,有多少个不超过 2024 的正整数,与 2024 异或后结果小于 2024 。
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案为2001
#include <bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int main()
{
IOS;
int n = 2024;
int res = 0;
for (int i = 1; i <= n; i++) // 枚举i
{
if ((i ^ n) < n) // 异或判断
{
res++; // 统计答案
}
}
cout << res << endl;
return 0;
}
4.
【问题描述】
小蓝有一个整数,初始值为 1 ,他可以花费一些代价对这个整数进行变换。
- 小蓝可以花费 1 的代价将整数增加 1 。
- 小蓝可以花费 3 的代价将整数增加一个值,这个值是整数的数位中最大的那个(1 到 9)。
- 小蓝可以花费 10 的代价将整数变为原来的 2 倍。
例如,如果整数为 16,花费 3 将整数变为 22 。
又如,如果整数为 22,花费 1 将整数变为 23 。
又如,如果整数为 23,花费 10 将整数变为 46 。
请问,如果要将整数从初始值 1 变为 2024,请问最少需要多少代价?
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案为79
#include <bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
const int N = 1e9;
int max_(int x)
{
int maxx = 0;
while (x > 0)
{
int g = x % 10;
if (g > maxx)
{
maxx = g;
}
x /= 10;
}
return maxx;
}
int main()
{
IOS;
int n = 2024;
int dp[2030];
for (int i = 0; i < 2030; i++) // 初始化
{
dp[i] = N;
}
dp[1] = 0; // 1的代价为0
for (int i = 1; i <= n; i++)
{
if (i + 1 <= n) // 代价为1
{
dp[i + 1] = min(dp[i + 1], dp[i] + 1);
}
int maxx = max_(i); // 代价为3
if (i + maxx <= n)
{
dp[i + maxx] = min(dp[i + maxx], dp[i] + 3);
}
if (i * 2 <= n) // 代价为10
{
dp[i * 2] = min(dp[i * 2], dp[i] + 10);
}
}
cout << dp[n] << endl;
return 0;
}
5.
【问题描述】
小蓝有以下 100 个整数:
534, 386, 319, 692, 169, 338, 521, 713, 640, 692, 969, 362, 311, 349, 308, 357, 515, 140, 591, 216,
57, 252, 575, 630, 95, 274, 328, 614, 18, 605, 17, 980, 166, 112, 997, 37, 584, 64, 442, 495,
821, 459, 453, 597, 187, 734, 827, 950, 679, 78, 769, 661, 452, 983, 356, 217, 394, 342, 697, 878,
475, 250, 468, 33, 966, 742, 436, 343, 255, 944, 588, 734, 540, 508, 779, 881, 153, 928, 764, 703,
459, 840, 949, 500, 648, 163, 547, 780, 749, 132, 546, 199, 701, 448, 265, 263, 87, 45, 828, 634.
小蓝想从中选出一部分数求和,使得和是 24 的倍数,请问这个和最大是多少?
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案为49176
#include <bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int a[] = {534, 386, 319, 692, 169, 338, 521, 713, 640, 692, 969, 362, 311, 349, 308, 357, 515, 140, 591, 216, 57, 252, 575, 630, 95, 274, 328, 614, 18, 605, 17, 980, 166, 112, 997, 37, 584, 64, 442, 495, 821, 459, 453, 597, 187, 734, 827, 950, 679, 78, 769, 661, 452, 983, 356, 217, 394, 342, 697, 878, 475, 250, 468, 33, 966, 742, 436, 343, 255, 944, 588, 734, 540, 508, 779, 881, 153, 928, 764, 703, 459, 840, 949, 500, 648, 163, 547, 780, 749, 132, 546, 199, 701, 448, 265, 263, 87, 45, 828, 634};
const int p = 24;
const int n = 100;
int main()
{
IOS;
int dp[25];
memset(dp, -1, sizeof(dp));
dp[0] = 0;
for (int i = 0; i < n; i++) // 反向DP
{
int tmp = a[i];
int new_dp[25];
memcpy(new_dp, dp, sizeof(dp)); // 复制dp数组
for (int j = 0; j < p; j++)
{
if (dp[j] != -1)
{
int k = (j + tmp) % p; // 计算新的余数
new_dp[k] = max(dp[j] + tmp, new_dp[k]); // 更新最大和
}
}
memcpy(dp, new_dp, sizeof(dp)); // 更新dp数组
}
cout << dp[0] << endl;
return 0;
}
6.
【问题描述】
小蓝准备请自己的朋友吃饭。小蓝朋友很多,最终吃饭的人总数达 2024 人(包括他自己)。
请问如果每桌最多坐 n 人,最少要多少桌才能保证每个人都能吃饭。
【输入格式】
输入一行包含一个整数 n 。
【输出格式】
输出一行包含一个整数,表示最少的桌数。
【样例输入】
10
【样例输出】
203
【样例输入】
8
【样例输出】
253
【评测用例规模与约定】
对于所有评测用例,1 <= n <= 2024。
#include <bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int main()
{
IOS;
int n;
cin >> n;
for (int i = 1; i <= 2024; i++) // n为1时,显然i为2024
{
if (i * n < 2024)
{
continue;
}
else
{
cout << i << endl;
break;
}
}
return 0;
}
7.
【问题描述】
小蓝有一个数组 a[1], a[2], …, a[n] ,请求出数组中值最小的偶数,输出这个值。
【输入格式】
输入的第一行包含一个整数 n 。
第二行包含 n 个整数,相邻数之间使用一个空格分隔,依次表示 a[1], a[2], …, a[n] 。
【输出格式】
输出一行,包含一个整数,表示答案。数据保证数组中至少有一个偶数。
【样例输入】
9 9 9 8 2 4 4 3 5 3
【样例输出】
2
【样例输入】
5 4321 2143 1324 1243 4312
【样例输出】
1324
【评测用例规模与约定】
对于 30% 的评测用例,1 <= n <= 100,0 <= a[i] <= 1000。
对于 60% 的评测用例,1 <= n <= 1000,0 <= a[i] <= 1000。
对于所有评测用例,1 <= n <= 10000,0 <= a[i] <= 1000000。
#include <bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int main()
{
IOS;
int a[10005];
int n;
cin >> n;
for (int i = 0; i < n; i++)
{
cin >> a[i];
}
sort(a, a + n); // 排序,默认从小到大
for (int i = 0; i < n; i++)
{
if (a[i] % 2 == 0)
{
cout << a[i] << endl;
break;
}
}
return 0;
}
8.
【问题描述】
一个字符串包含LANQIAO是指在字符串中能取出几个字符,将他们按照在原串中的位置顺序摆成一排后字符串为 LANQIAO 。即字符串包含 LANQIAO 是指 LANQIAO 是这个串的子序列。
例如:LLLLLANHAHAHAQLANIIIIALANO 中包含 LANQIAO 。
又如:OAIQNAL 中不包含 LANQIAO 。
给点一个字符串,判断字符串中是否包含 LANQIAO 。
【输入格式】
输入一行包含一个字符串。
【输出格式】
如果包含 LANQIAO ,输出一个英文单词 YES ,否则输出一个英文单词 NO 。
【样例输入】
LLLLLANHAHAHAQLANIIIIALANO
【样例输出】
YES
【样例输入】
OAIQNAL
【样例输出】
NO
【评测用例规模与约定】
对于所有评测用例,输入的字符串非空串,由大写字母组成,长度不超过 1000 。
#include <bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int main()
{
IOS;
string s;
cin >> s; // 目标串
string t = "LANQIAO"; // 模式串
int len_s = s.size();
int len_t = t.size();
int i = 0, j = 0;
while (i < len_s && j < len_t) // 双指针
{
if (s[i] == t[j])
{
j++;
}
i++;
}
if (j == len_t) // 匹配成功
{
cout << "YES" << endl;
}
else
{
cout << "NO" << endl;
}
return 0;
}
9.
【问题描述】
小蓝有一个 n 行 m 列的矩阵 a[i][j] ,他想在矩阵中找出一个“口”字形状的区域,使得区域上的值的和最大。
具体讲,一个“口”字形状的区域可以由两个坐标 (x1, y1) 和 (x2, y2) 确定,满足:
- 1 <= x1 < x2 <= n ;
- 1 <= y1 < y2 <= m ;
- x2 - x1 = y2 - y1 。
对应的区域由满足以下条件之一的点 (x, y) 构成:
- x1 <= x <= x2,且 y = y1 ,对应“口”的左边一竖;
- y1 <= y <= y2,且 x = x1 ,对应“口”的上面一横;
- x1 <= x <= x2,且 y = y2 ,对应“口”的右边一竖;
- y1 <= y <= y2,且 x = x2 ,对应“口”的下面一横。
请注意有些点满足以上条件的多个,例如左上角的点 (x1, y1) ,在计算时算为一个点。
区域上的值是指对应区域的所有点的值,即“口”字的框上的值,不含框内和框外的值。
【输入格式】
输入的第一行包含两个整数 n, m ,分别表示行数和列数。
接下来 n 行,每行包含 m 个整数,相邻数之间使用一个空格分隔,依次表示矩阵的每行每列的值,本部分的第 i 行第 j 列表示 a[i][j] 。
【输出格式】
输出一行包含一个整数,表示最大的和。
【样例输入】
5 6 1 -1 2 -2 3 -3 -1 2 -2 3 -3 4 2 -2 3 -3 4 -4 -2 3 -3 4 -4 5 3 -3 4 -4 5 -5
【样例输出】
4
【样例说明】
取 (x1, y1) = (1, 1) , (x2, y2) = (5, 5) 可得到最大值。
【评测用例规模与约定】
对于 30% 的评测用例,1 <= n, m <= 30 ,-1000 <= a[i][j] <= 1000 。
对于 60% 的评测用例,1 <= n, m <= 100 ,-1000 <= a[i][j] <= 1000 。
对于所有评测用例,1 <= n, m <= 300 ,-1000 <= a[i][j] <= 1000 。
解一:暴力
O
(
n
)
=
O
(
n
∗
m
∗
m
i
n
(
n
,
m
)
2
)
O(n) = O(n * m * min(n, m)^2)
O(n)=O(n∗m∗min(n,m)2)
#include <bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
const int N = 305;
int mp[N][N];
int n, m;
int res = 0;
// 求子矩阵的边界和
int get_edge(int x1, int y1, int x2, int y2)
{
int sum = 0;
// 左竖边(x1,y1)到(x2,y2)的边界和
for (int i = x1; i <= x2; i++)
{
sum += mp[i][y1];
}
// 上横边(x1,y1)到(x2,y2)的边界和
for (int i = y1; i <= y2; i++)
{
sum += mp[x1][i];
}
// 右竖边(x1,y1)到(x2,y2)的边界和
for (int i = x1; i <= x2; i++)
{
sum += mp[i][y2];
}
// 下横边(x1,y1)到(x2,y2)的边界和
for (int i = y1; i <= y2; i++)
{
sum += mp[x2][i];
}
sum -= (mp[x1][y1] + mp[x1][y2] + mp[x2][y1] + mp[x2][y2]); // 减去重复的边界
return sum;
}
int main()
{
IOS;
cin >> n >> m;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
cin >> mp[i][j];
}
}
// 枚举子矩阵
for (int x1 = 1; x1 <= n; x1++)
{
for (int y1 = 1; y1 <= m; y1++)
{// 从(x1,y1)到(x2,y2)的子矩阵
for (int size = 1; x1 + size - 1 <= n && y1 + size - 1 <= m; size++) // 确保子矩阵为方阵
{
int x2 = x1 + size - 1;
int y2 = y1 + size - 1;
int sum = get_edge(x1, y1, x2, y2); // 子矩阵的边界和
res = max(res, sum); // 取最小值
}
}
}
cout << res << endl;
return 0;
}
解二:前缀和优化
O
(
n
)
=
O
(
n
∗
m
∗
m
i
n
(
n
,
m
)
)
O(n) = O(n * m * min(n, m))
O(n)=O(n∗m∗min(n,m))
#include <bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
const int N = 305;
int mp[N][N];
int n, m;
int res = 0;
int prefix[N][N];
void prefix_init() // 前缀和初始化
{
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
prefix[i][j] = mp[i][j];
if (i > 1)
{
prefix[i][j] += prefix[i - 1][j];
}
if (j > 1)
{
prefix[i][j] += prefix[i][j - 1];
}
if (i > 1 && j > 1)
{
prefix[i][j] -= prefix[i - 1][j - 1];
}
}
}
}
int get_sum(int x1, int y1, int x2, int y2) // 求子矩阵的和
{
int res = prefix[x2][y2];
if (x1 > 1)
{
res -= prefix[x1 - 1][y2];
}
if (y1 > 1)
{
res -= prefix[x2][y1 - 1];
}
if (x1 > 1 && y1 > 1)
{
res += prefix[x1 - 1][y1 - 1];
}
return res;
}
// 求子矩阵的边界和
int get_edge(int x1, int y1, int x2, int y2)
{
int sum = 0;
// 左竖边(x1,y1)到(x2,y1)的边界和
sum += get_sum(x1, y1, x2, y1);
// 右竖边(x1,y2)到(x2,y2)的边界和
sum += get_sum(x1, y2, x2, y2);
// 上横边(x1,y1)到(x1,y2)的边界和
sum += get_sum(x1, y1, x1, y2);
// 下横边(x2,y1)到(x2,y2)的边界和
sum += get_sum(x2, y1, x2, y2);
sum -= (mp[x1][y1] + mp[x1][y2] + mp[x2][y1] + mp[x2][y2]); // 减去重复的边界
return sum;
}
int main()
{
IOS;
cin >> n >> m;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
cin >> mp[i][j];
}
}
prefix_init(); // 前缀和初始化
// 枚举子矩阵
for (int x1 = 1; x1 <= n; x1++)
{
for (int y1 = 1; y1 <= m; y1++)
{
for (int size = 1; x1 + size - 1 <= n && y1 + size - 1 <= m; size++) // 确保子矩阵为方阵
{
int x2 = x1 + size - 1;
int y2 = y1 + size - 1;
int sum = get_edge(x1, y1, x2, y2); // 子矩阵的边界和
res = max(res, sum); // 取最小值
}
}
}
cout << res << endl;
return 0;
}
上述前缀和使用容斥定理,高维前缀和可用下列代码优化
void highDimensionalPrefixSum(vector<vector<int>>& f, int n) {
for (int j = 0; j < n; j++) {
for (int i = 0; i < (1 << n); i++) {
if (!(i >> j & 1)) {
f[i] += f[i ^ (1 << j)];
}
}
}
}
// 恢复原始值(根据高维前缀和结果反推)
void recoverOriginalValues(vector<vector<int>>& f, int n)
{
for (int j = n - 1; j >= 0; j--) {
for (int i = (1 << n) - 1; i >= 0; i--) {
if (i >> j & 1) {
f[i] -= f[i ^ (1 << j)];
}
}
}
}