17)股票投资的主要分析方法

股票投资分析方法主要有三大类∶基本分析法、技术分析法、量化分析法
 

  • 基本分析法

含义:股票分析师根据经济学、金融学、财务管理学及投资学等基本原理,对觉得股票价值和价格的基本要素进行分析,评估股票的投资价值,判断股票的合理价位,提出相应投资建议的一种分析方法

其有两个假设:股票的价值决定其价格,股票的价格围绕价值波动

分析的三个方面:宏观经济分析、行业和区域分析、公司分析

经济指标:先行性指标、同步性指标、滞后性指标(如失业率、银行未收回的贷款)

  • 技术分析法

含义:技术分析是仅从股票的市场行为来分析股票价格的未来变化趋势的方法

三个假设:市场的行为包含一切信息,价格沿趋势移动,历史会重演

方法:K线理论、切线理论、形态理论、技术指标理论、波浪理论、循环周期理论

  • 量化分析法

含义:利用统计、数据模型和其他定量模型进行证券市场相关研究的一种方法。

特点:会使用大量数据、模型和电脑的显著特点

另外:

基本分析法侧重股票长期投资的价值,技术分析法侧重的是波动规律

基本分析法分析宏观经济、行业等外部因素及 内部因素与股票的关系;技术分析法分析供需表现、市场价格、交易数量

基本分析法分析长期价值,股票是否值得投资,帮助投资者选择适当的交易时间和操作方法;技术分析法看短期性质,分析股票涨跌表现,帮助投资者选择该投资哪个股票,帮助投资者做正确的选择

### NVIDIA B100 GPU Specifications and Information NVIDIA B100 GPU represents a significant advancement in the field of high-performance computing, particularly suited for deep learning and scientific calculations. This device adopts NVIDIA's latest GPU architecture, integrating an extensive number of Tensor Cores and CUDA Cores to provide robust computational power for various tasks such as training large-scale neural networks or conducting complex simulations[^3]. #### Architecture and Performance The integration of numerous Tensor Cores alongside traditional CUDA cores ensures that B100 can handle both matrix operations critical for AI applications efficiently while maintaining versatility across other types of workloads. Moreover, support for multiple precision formats including FP32 (single), FP16 (half), TF32 further enhances its adaptability by allowing users to choose between speed and accuracy based on their specific requirements. #### Memory Configuration In terms of memory configuration, although not explicitly detailed within provided references, it is implied from context clues about similar GPUs like A100 which typically feature substantial amounts of fast-access RAM designed specifically around optimizing data throughput during intensive processing sessions involving massive datasets common today’s cutting-edge research projects[^1]. ```python # Example Python code demonstrating how one might interact with TensorFlow using mixed precisions supported by B100. import tensorflow as tf with tf.device('/GPU:0'): # Use float16 policy for better performance when possible policy = tf.keras.mixed_precision.Policy('mixed_float16') model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'], dtype=policy) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值