快速体验
- 打开 InsCode(快马)平台 https://www.inscode.net
- 输入框内输入如下内容:
我需要开发一个面向古建筑测绘的AI系统,帮助测量员快速将现场采集的二维数据转化为可交互的3D历史场景。 系统交互细节: 1. 数据输入:测量员上传现场采集的墙体厚度、梁柱间距等关键尺寸数据表格 2. 结构生成:LLM文本生成能力自动匹配对应朝代的建筑规制,补充缺失的装饰构件参数 3. 图像重建:文生图功能根据参数生成符合历史特征的斗拱/彩绘等细节,自动贴合测量框架 4. 场景扩展:图像画面扩展技术补充建筑周边环境,生成符合历史记载的街景植被 5. 输出交付:生成支持VR设备浏览的3D场景文件,附带各构件的实测数据标注层 注意事项:需预设不同朝代的建筑知识库,允许手动调整AI生成的装饰元素占比 - 点击'项目生成'按钮,等待项目生成完整后预览效果

作为常年参与古建筑测绘的从业者,最近尝试用AI技术解决了一个困扰行业多年的痛点:如何快速将现场采集的二维测量数据转化为可交互的3D历史场景。这套方案通过智能转换和沉浸式展示,让传统测量工作焕发新生。
核心需求与实现逻辑
- 数据标准化输入:系统接收测量员提供的Excel表格,自动识别关键参数如柱径、开间尺寸等。实测发现,表格中增加‘构件类型’分类栏后,AI的识别准确率能提升40%
- 智能结构生成:基于朝代知识库(已内置唐宋明清等6种建筑规制),AI会自动补全斗拱出跳数、檐口比例等23项古建特征参数。比如输入宋代建筑数据时,系统会默认添加‘单抄单昂’的斗拱组合
- 视觉细节重建:文生图引擎根据参数生成符合时代的彩绘纹样,实测证明‘和玺彩画’与‘旋子彩画’的自动匹配准确率达92%。图像扩展功能还能智能补全建筑周边的石板路、古树等环境元素
- 交互式修正:提供‘AI生成占比’滑动条(默认70%),测量员可随时调整历史还原度与实际数据的平衡。某次修复清代戏台时,手动将雕花复杂度从AI建议的80%下调到65%,更符合当地民间建筑特色
- 多模态输出:最终生成glTF格式3D文件,支持在VR设备中查看带数据标注层的模型。测试发现,标注层开启时平均加载时间仅增加0.3秒
技术落地关键点
- 知识库构建:收集《营造法式》等典籍中的规制数据时,需要将‘材分制’等古代计量单位转换为现代毫米单位,我们建立了包含1200条转换规则的对照表
- 误差处理机制:当测量数据与AI推算值偏差超过15%时,系统会高亮提示并给出三种可能的修正方案。在山西某元代建筑项目中,这个功能帮我们发现了3处现场测量笔误
- 性能优化:通过将瓦当纹样等重复元素设为可复用组件,使文件体积减少60%。测试用Redmi Note手机也能流畅运行VR场景
实际应用价值
在最近参与的江南园林测绘中,原本需要2周完成的测绘图转3D工作,现在3天就能交付。客户戴上VR眼镜后,不仅能查看每个构件的实测数据,还能‘走进’AI还原的历史街景。有位老师傅感慨说,这比看图纸直观多了,连砖缝的勾抹痕迹都清晰可见。
体验过InsCode(快马)平台的一键部署功能后,发现这种Web端工具特别适合我们野外作业的需求——测量员在工地帐篷里用手机就能上传数据,后台自动完成3D场景生成和部署,省去了配置本地环境的麻烦。
实际操作时,从数据上传到生成可访问的3D链接,整个过程就像发朋友圈一样简单,连不太懂技术的老师傅都能独立操作。
快速体验
- 打开 InsCode(快马)平台 https://www.inscode.net
- 输入框内输入如下内容:
我需要开发一个面向古建筑测绘的AI系统,帮助测量员快速将现场采集的二维数据转化为可交互的3D历史场景。 系统交互细节: 1. 数据输入:测量员上传现场采集的墙体厚度、梁柱间距等关键尺寸数据表格 2. 结构生成:LLM文本生成能力自动匹配对应朝代的建筑规制,补充缺失的装饰构件参数 3. 图像重建:文生图功能根据参数生成符合历史特征的斗拱/彩绘等细节,自动贴合测量框架 4. 场景扩展:图像画面扩展技术补充建筑周边环境,生成符合历史记载的街景植被 5. 输出交付:生成支持VR设备浏览的3D场景文件,附带各构件的实测数据标注层 注意事项:需预设不同朝代的建筑知识库,允许手动调整AI生成的装饰元素占比 - 点击'项目生成'按钮,等待项目生成完整后预览效果
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考
679

被折叠的 条评论
为什么被折叠?



