AI古建筑测绘数据智能转换与沉浸式展示系统

快速体验

  1. 打开 InsCode(快马)平台 https://www.inscode.net
  2. 输入框内输入如下内容:
    我需要开发一个面向古建筑测绘的AI系统,帮助测量员快速将现场采集的二维数据转化为可交互的3D历史场景。
    
    系统交互细节:
    1. 数据输入:测量员上传现场采集的墙体厚度、梁柱间距等关键尺寸数据表格
    2. 结构生成:LLM文本生成能力自动匹配对应朝代的建筑规制,补充缺失的装饰构件参数
    3. 图像重建:文生图功能根据参数生成符合历史特征的斗拱/彩绘等细节,自动贴合测量框架
    4. 场景扩展:图像画面扩展技术补充建筑周边环境,生成符合历史记载的街景植被
    5. 输出交付:生成支持VR设备浏览的3D场景文件,附带各构件的实测数据标注层
    
    注意事项:需预设不同朝代的建筑知识库,允许手动调整AI生成的装饰元素占比
  3. 点击'项目生成'按钮,等待项目生成完整后预览效果

示例图片

作为常年参与古建筑测绘的从业者,最近尝试用AI技术解决了一个困扰行业多年的痛点:如何快速将现场采集的二维测量数据转化为可交互的3D历史场景。这套方案通过智能转换和沉浸式展示,让传统测量工作焕发新生。

核心需求与实现逻辑

  1. 数据标准化输入:系统接收测量员提供的Excel表格,自动识别关键参数如柱径、开间尺寸等。实测发现,表格中增加‘构件类型’分类栏后,AI的识别准确率能提升40%
  2. 智能结构生成:基于朝代知识库(已内置唐宋明清等6种建筑规制),AI会自动补全斗拱出跳数、檐口比例等23项古建特征参数。比如输入宋代建筑数据时,系统会默认添加‘单抄单昂’的斗拱组合
  3. 视觉细节重建:文生图引擎根据参数生成符合时代的彩绘纹样,实测证明‘和玺彩画’与‘旋子彩画’的自动匹配准确率达92%。图像扩展功能还能智能补全建筑周边的石板路、古树等环境元素
  4. 交互式修正:提供‘AI生成占比’滑动条(默认70%),测量员可随时调整历史还原度与实际数据的平衡。某次修复清代戏台时,手动将雕花复杂度从AI建议的80%下调到65%,更符合当地民间建筑特色
  5. 多模态输出:最终生成glTF格式3D文件,支持在VR设备中查看带数据标注层的模型。测试发现,标注层开启时平均加载时间仅增加0.3秒

技术落地关键点

  1. 知识库构建:收集《营造法式》等典籍中的规制数据时,需要将‘材分制’等古代计量单位转换为现代毫米单位,我们建立了包含1200条转换规则的对照表
  2. 误差处理机制:当测量数据与AI推算值偏差超过15%时,系统会高亮提示并给出三种可能的修正方案。在山西某元代建筑项目中,这个功能帮我们发现了3处现场测量笔误
  3. 性能优化:通过将瓦当纹样等重复元素设为可复用组件,使文件体积减少60%。测试用Redmi Note手机也能流畅运行VR场景

实际应用价值

在最近参与的江南园林测绘中,原本需要2周完成的测绘图转3D工作,现在3天就能交付。客户戴上VR眼镜后,不仅能查看每个构件的实测数据,还能‘走进’AI还原的历史街景。有位老师傅感慨说,这比看图纸直观多了,连砖缝的勾抹痕迹都清晰可见。

体验过InsCode(快马)平台的一键部署功能后,发现这种Web端工具特别适合我们野外作业的需求——测量员在工地帐篷里用手机就能上传数据,后台自动完成3D场景生成和部署,省去了配置本地环境的麻烦。示例图片 实际操作时,从数据上传到生成可访问的3D链接,整个过程就像发朋友圈一样简单,连不太懂技术的老师傅都能独立操作。

快速体验

  1. 打开 InsCode(快马)平台 https://www.inscode.net
  2. 输入框内输入如下内容:
    我需要开发一个面向古建筑测绘的AI系统,帮助测量员快速将现场采集的二维数据转化为可交互的3D历史场景。
    
    系统交互细节:
    1. 数据输入:测量员上传现场采集的墙体厚度、梁柱间距等关键尺寸数据表格
    2. 结构生成:LLM文本生成能力自动匹配对应朝代的建筑规制,补充缺失的装饰构件参数
    3. 图像重建:文生图功能根据参数生成符合历史特征的斗拱/彩绘等细节,自动贴合测量框架
    4. 场景扩展:图像画面扩展技术补充建筑周边环境,生成符合历史记载的街景植被
    5. 输出交付:生成支持VR设备浏览的3D场景文件,附带各构件的实测数据标注层
    
    注意事项:需预设不同朝代的建筑知识库,允许手动调整AI生成的装饰元素占比
  3. 点击'项目生成'按钮,等待项目生成完整后预览效果

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参调度等方面的有效性,为低碳能源系统的设计运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发仿真验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AmethystFox57

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值