《尚硅谷数据结构》-二叉树的遍历

目录

二叉树

为什么需要树这种数据结构

二叉树的概念

二叉树的遍历

 二叉树遍历代码实现


二叉树

为什么需要树这种数据结构

数组存储方式的分析

  • 优点: 通过下标方式访问元素, 速度快。 对于有序数组, 还可使用二分查找提高检索速度。
  • 缺点: 如果要检索具体某个值, 或者插入值(按一定顺序)会整体移动, 效率较低

链式存储方式的分析

  • 优点: 在一定程度上对数组存储方式有优化(比如: 插入一个数值节点, 只需要将插入节点, 链接到链表中即可,删除效率也很好)。

  • 缺点: 在进行检索时, 效率仍然较低, 比如(检索某个值, 需要从头节点开始遍历)

树存储方式的分析

树能提高数据存储、读取的效率,比如利用二叉排序树(Binary Sort Tree), 既可以保证数据的检索速度, 同时也可以保证数据的插入、删除、修改的速度。

PS: 叶子节点 (没有子节点的节点)

二叉树的概念

树有很多种, 每个节点最多只能有两个子节点的一种形式称为二叉树。

二叉树的子节点分为左节点和右节点。

img

  1. 如果该二叉树的所有叶子节点都在最后一层, 并且结点总数= 2^n -1 , n 为层数, 则我们称为 满二叉树

  2. 如果该二叉树的所有叶子节点都在最后一层或者倒数第二层, 而且最后一层的叶子节点在左边连续, 倒数第二层的叶子节点在右边连续, 我们称为完全二叉树。

 

二叉树的遍历

  1. 前序遍历: 先输出父节点, 再遍历左子树和右子树
  2. 中序遍历: 先遍历左子树, 再输出父节点, 再遍历右子树
  3. 后序遍历: 先遍历左子树, 再遍历右子树, 最后输出父节点
  4. 小结:父节点的输出顺序就能判断是前序、中序还是后序

前序遍历:

(1)先输出当前节点 (父节点)

(2)如果左子节点不为空,则递归继续前序遍历

(3)如果右子节点不为空,则递归继续前序遍历 

 二叉树遍历代码实现

package tree;

public class BinaryTree {
    public static void main(String[] args) {
        //创建一个二叉树
        BinaryTree1 binaryTree = new BinaryTree1();
        //创建需要的结点
        HeroNode root = new HeroNode(1, "宋江");
        HeroNode node2 = new HeroNode(2, "吴用");
        HeroNode node3 = new HeroNode(3, "卢俊义");
        HeroNode node4 = new HeroNode(4, "林冲");
        HeroNode node5 = new HeroNode(5, "关胜");

        //说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
        root.setLeft(node2);
        root.setRight(node3);
        node3.setRight(node4);
        node3.setLeft(node5);
        binaryTree.setRoot(root);

        System.out.println("前序遍历");
        binaryTree.preOrder();

        System.out.println("中序遍历");
        binaryTree.infixOrder();

        System.out.println("后序遍历");
        binaryTree.postOrder();
    }
}

//定义一个二叉树
class BinaryTree1{
    private HeroNode root; //根节点

    public void setRoot(HeroNode root){
        this.root = root;
    }

    //前序遍历
    public void preOrder(){
        if(this.root != null){
            this.root.preOrder();
        }else{
            System.out.println("二叉树为空,无法遍历");
        }
    }

    //中序遍历
    public void infixOrder(){
        if(this.root != null){
            this.root.infixOrder();
        }else{
            System.out.println("二叉树为空,无法遍历");
        }
    }

    //前序遍历
    public void postOrder(){
        if(this.root != null){
            this.root.postOrder();
        }else{
            System.out.println("二叉树为空,无法遍历");
        }
    }
}

//先创建HeroNode 结点
class HeroNode{
    private int no;
    private String name;
    private HeroNode left; //默认为null
    private HeroNode right;

    public HeroNode(int no, String name){
        this.no = no;
        this.name = name;
    }

    public int getNo() {
        return no;
    }

    public void setNo(int no) {
        this.no = no;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public HeroNode getLeft() {
        return left;
    }

    public void setLeft(HeroNode left) {
        this.left = left;
    }

    public HeroNode getRight() {
        return right;
    }

    public void setRight(HeroNode right) {
        this.right = right;
    }

    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                ", name='" + name + '\'' +
                '}';
    }

    //前序遍历的方法
    public void preOrder(){
        System.out.println(this);  //先输出父节点
        //递归向左子树前序遍历
        if(this.left != null){
            this.left.preOrder();
        }
        //递归向右子树前序遍历
        if(this.right != null){
            this.right.preOrder();
        }
    }

    //中序遍历的方法
    public void infixOrder(){
        //递归向左子树前序遍历
        if(this.left != null){
            this.left.infixOrder();
        }
        System.out.println(this);  //先输出父节点
        //递归向右子树前序遍历
        if(this.right != null){
            this.right.infixOrder();
        }
    }

    //后序遍历的方法
    public void postOrder(){
        //递归向左子树前序遍历
        if(this.left != null){
            this.left.postOrder();
        }
        //递归向右子树前序遍历
        if(this.right != null){
            this.right.postOrder();
        }
        System.out.println(this);  //先输出父节点
    }
}

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值