目录
二叉树
为什么需要树这种数据结构
数组存储方式的分析
- 优点: 通过下标方式访问元素, 速度快。 对于有序数组, 还可使用二分查找提高检索速度。
- 缺点: 如果要检索具体某个值, 或者插入值(按一定顺序)会整体移动, 效率较低
链式存储方式的分析
-
优点: 在一定程度上对数组存储方式有优化(比如: 插入一个数值节点, 只需要将插入节点, 链接到链表中即可,删除效率也很好)。
-
缺点: 在进行检索时, 效率仍然较低, 比如(检索某个值, 需要从头节点开始遍历)
树存储方式的分析
树能提高数据存储、读取的效率,比如利用二叉排序树(Binary Sort Tree), 既可以保证数据的检索速度, 同时也可以保证数据的插入、删除、修改的速度。
PS: 叶子节点 (没有子节点的节点)
二叉树的概念
树有很多种, 每个节点最多只能有两个子节点的一种形式称为二叉树。
二叉树的子节点分为左节点和右节点。
-
如果该二叉树的所有叶子节点都在最后一层, 并且结点总数= 2^n -1 , n 为层数, 则我们称为 满二叉树。
-
如果该二叉树的所有叶子节点都在最后一层或者倒数第二层, 而且最后一层的叶子节点在左边连续, 倒数第二层的叶子节点在右边连续, 我们称为完全二叉树。
二叉树的遍历
- 前序遍历: 先输出父节点, 再遍历左子树和右子树
- 中序遍历: 先遍历左子树, 再输出父节点, 再遍历右子树
- 后序遍历: 先遍历左子树, 再遍历右子树, 最后输出父节点
- 小结:父节点的输出顺序就能判断是前序、中序还是后序
前序遍历:
(1)先输出当前节点 (父节点)
(2)如果左子节点不为空,则递归继续前序遍历
(3)如果右子节点不为空,则递归继续前序遍历
二叉树遍历代码实现
package tree;
public class BinaryTree {
public static void main(String[] args) {
//创建一个二叉树
BinaryTree1 binaryTree = new BinaryTree1();
//创建需要的结点
HeroNode root = new HeroNode(1, "宋江");
HeroNode node2 = new HeroNode(2, "吴用");
HeroNode node3 = new HeroNode(3, "卢俊义");
HeroNode node4 = new HeroNode(4, "林冲");
HeroNode node5 = new HeroNode(5, "关胜");
//说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
node3.setLeft(node5);
binaryTree.setRoot(root);
System.out.println("前序遍历");
binaryTree.preOrder();
System.out.println("中序遍历");
binaryTree.infixOrder();
System.out.println("后序遍历");
binaryTree.postOrder();
}
}
//定义一个二叉树
class BinaryTree1{
private HeroNode root; //根节点
public void setRoot(HeroNode root){
this.root = root;
}
//前序遍历
public void preOrder(){
if(this.root != null){
this.root.preOrder();
}else{
System.out.println("二叉树为空,无法遍历");
}
}
//中序遍历
public void infixOrder(){
if(this.root != null){
this.root.infixOrder();
}else{
System.out.println("二叉树为空,无法遍历");
}
}
//前序遍历
public void postOrder(){
if(this.root != null){
this.root.postOrder();
}else{
System.out.println("二叉树为空,无法遍历");
}
}
}
//先创建HeroNode 结点
class HeroNode{
private int no;
private String name;
private HeroNode left; //默认为null
private HeroNode right;
public HeroNode(int no, String name){
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
//前序遍历的方法
public void preOrder(){
System.out.println(this); //先输出父节点
//递归向左子树前序遍历
if(this.left != null){
this.left.preOrder();
}
//递归向右子树前序遍历
if(this.right != null){
this.right.preOrder();
}
}
//中序遍历的方法
public void infixOrder(){
//递归向左子树前序遍历
if(this.left != null){
this.left.infixOrder();
}
System.out.println(this); //先输出父节点
//递归向右子树前序遍历
if(this.right != null){
this.right.infixOrder();
}
}
//后序遍历的方法
public void postOrder(){
//递归向左子树前序遍历
if(this.left != null){
this.left.postOrder();
}
//递归向右子树前序遍历
if(this.right != null){
this.right.postOrder();
}
System.out.println(this); //先输出父节点
}
}
运行结果: