- 博客(810)
- 资源 (25)
- 收藏
- 关注
原创 MambaMorph brain MR-CT
计算局部归一化互相关损失,用于衡量两个图像之间的相似性。: 通常用于图像配准任务,通过最大化图像之间的局部相似性来优化配准结果。: 使用卷积操作计算局部区域的均值和方差,然后计算归一化互相关。: 计算均方误差损失,用于衡量预测值和真实值之间的差异。: 适用于回归任务,如图像重建或配准。: 直接计算预测值和真实值之间的平方差,并取平均。: 计算Dice系数损失,用于衡量分割结果的重叠度。: 常用于医学图像分割任务,评估分割结果与真实标签的重叠程度。
2025-02-11 15:02:32
208
原创 生成纹理边缘保持loss记录
这里的梯度一致性是通过使用二维卷积操作来计算 ,卷积核是一个3x3的矩阵,其中中心值(对应图像中心的像素)的权重为8,其余为-1。这种卷积核可能用于检测图像中的边缘或梯度变化。计算一个边缘感知的损失值。该函数使用Laplacian算子来检测输入和目标图像的边缘,并计算它们之间的差异作为损失。总变异损失(Total Variation Loss)用于量化图像中相邻像素之间的变化程度,以鼓励平滑。1 计算两个图的ncc 值。
2024-11-27 14:51:15
196
原创 cpp知识点
C++11 智能指针详解_c++ 11所有的智能指针-CSDN博客百度实习面试:new和malloc的区别,什么时候用new 什么时候用mallc? 使用模板特化来计算阶乘: 类型列表的计算使用 lambda 来生成类型列表的长度。编译时条件选择通过 lambda 选择类型。 lambda 可以在模板元编程中应用于多个场景,以下是一些额外的例子:使用 lambda 来计算一个类型序列中的最大值。示例 6: 计算类型的总和使用 lambda 动态计算类型的总和
2024-07-16 17:45:36
664
1
转载 【cpp中的虚函数与继承个人笔记总结】
https://www.cnblogs.com/jianyungsun/p/6361670.html继承:继承主要实现重用代码,节省开发时间。1、C#中的继承符合下列规则: 继承是可传递的。如果C从B中派生,B又从A中派生,那么C不仅继承了B中声明的成员,同样也继承了A中的成员。Object类作为所有类的基类。 派生类应当是对基类的扩展。派生类可以添加新的成员,但不能除...
2018-10-12 00:02:48
508
原创 cudaMallocManaged统一内存和cudaMallocHost锁页内存使用
特性示例 1 (传统模型)示例 2 (统一内存)内存分配malloc(Host)cudaMalloc(Device)(统一)指针管理两套指针 (e.g.,h_ad_a一套指针 (e.g.,a数据拷贝必须手动cudaMemcpy自动迁移(无需cudaMemcpy编程复杂度高,繁琐,易错低,简洁,直观同步cudaMemcpy(D2H) 隐含了同步必须显式性能手动优化时通常性能最高编程简单,但自动迁移有开销cudamallochost和malloc有什么区别?它们都在Host (CPU) 内存。
2025-10-31 16:12:27
670
原创 libtorch ITK 部署 nnUNetV2 模型
PyTorch 原生模型只能在 Python 环境使用,而 libtorch 需要的是经过 TorchScript 转换的模型文件。PyTorch 和 libtorch 在内部实现和数据结构上高度相关,版本不一致会导致二进制不兼容,模型加载失败或推理异常。• C++ 端通过加载 TorchScript 模型,无需依赖 Python 环境,实现高效推理。确认 CUDA 和驱动版本匹配,使用支持 CUDA 的 libtorch。• 使用的是支持 CUDA 的 libtorch。
2025-10-30 16:24:56
829
原创 分布式资料
因为每个GPU中的模型是独立运行的,所以在所有的模型都计算出梯度后,才会在模型之间同步梯度(类似All-reduce)。这是数据并行的典型,需要将模型复制到每个GPU上,并且一但GPU0计算出梯度,则需要同步梯度,这需要大量的GPU数据传输(类似PS模式);现在,GPU 0 有梯度 G0,GPU 1 有梯度 G1,GPU 2 有 G2,GPU 3 有 G3。因为它们都从相同的模型状态开始,并且都应用了完全相同的平均梯度,所以它们会得到完全相同的新模型权重。现在,每个进程都有了全局的平均梯度。
2025-09-23 13:18:59
565
翻译 深度学习-TOP 10神经网络(动图讲解)
想象你的大脑中有一个决策小组。每个成员(神经元)接收不同的信息,经过思考后给出自己的建议,最终形成集体决策。输出层:给出最终答案第一层神经元:识别基础特征(比如"这是个圆形")第二层神经元:组合特征("圆形+红色+光滑")第三层神经元:形成概念("这可能是个苹果")输出层:做出判断("95%概率是苹果")读这句话:"小明去商店买了苹果,然后他把___带回家。你的大脑自动知道空白处应该填"苹果",因为你记住了前面的信息。这就是序列记忆能力。传统神经网络就像"金鱼",只有7秒记忆。
2025-09-19 17:49:53
221
原创 5T核磁mr效果
但磁共振三维成像技术,经过二十多年的发展,依然受限于物理及技术挑战(如:3D FSE虽然引入了变翻转角技术,采集效率仍然偏低,长回波链信号衰减额外引入模糊效应,AI加速技术难以支撑数十倍数据量的增加,三维高清扫描时间偏长;此外,5T图像中清晰显示出更丰富的肿瘤内部特征,包括分隔结构和信号不均匀区域,提示其在肿瘤细节显示方面具备显著优势。3T磁共振检查未见明确子灶,影像表现符合肝癌影像特征:肝右叶存在巨块占位,信号不均,边界尚清,弥散序列可见高信号,增强动脉期强化,门静脉期部分廓清,移行期低摄取。
2025-09-17 17:27:01
794
原创 qt资料2025
https://mp.weixin.qq.com/s/u4KEpSy8TfVpAPIvgTG8TAhttps://mp.weixin.qq.com/s/WYe8iwgUE3ltcTrqwCacUQC++系列三:QT代码库 - cactus9 - 博客园VS+Qt环境下解决中文乱码问题_qt+vs 的qlabel显示中文乱码-CSDN博客Qt + C++ 入门2(界面的知识点)_qt编写c++程序前端界面-CSDN博客QT_C++03-QMainWindow概述及界面搭建_c++ qmainwindow-CS
2025-09-10 01:44:25
326
原创 【天文】星光超分辨图像增强
利用这个基准,提出了一种通量不变超分辨率(FISR)模型,该模型可以根据输入的光度信息准确推断出通量一致的高分辨率图像,在新设计的通量一致性指标上比几种SR最先进方法高出24.84%,显示在天体物理学中的优势。大量实验证明了提出的方法的有效性和数据集的价值。超分辨率(SR)技术通过实现经济高效的高分辨率图像捕获,推动了天文成像的发展,这对于探测遥远的天体和进行精确的结构分析至关重要。STAR,这是一个大规模的天文SR数据集,包含54,738个通量一致的星场图像对,覆盖了广泛的天体区域。
2025-09-09 11:00:12
316
原创 YOLOv5 Face 中一些理解
这套公式是**将神经网络的预测输出(相对偏移量)转换回输入图像上人脸关键点绝对坐标(像素坐标)的核心步骤。它巧妙地结合了 YOLO 系列的网格(Grid)、锚框(Anchor)和步长(Stride)概念。无论人脸出现在图像的哪个位置,关键点相对于人脸中心(或锚框中心)的相对位置模式是相似的。这个网格单元的左上角(或中心,取决于具体实现)被认为是锚框的基准点。这意味着模型预测的关键点可以在锚框中心左右(或上下)一个锚框宽度(或高度)的范围内浮动。例如,在 80x80 的特征图上,第 15 列的网格。
2025-09-08 15:16:17
737
原创 3D多类别语义分割的Tversky Loss
为了计算Dice Loss等需要进行元素级乘法的损失,模型预测的概率格式和真实标签的整数索引格式必须统一。是类别的数量(例如,4个类别),这个维度上的每个值代表该体素属于对应类别的。,代表该体素所属的类别(例如,0代表背景,1代表器官A,2代表器官B等)。)转换为稀疏的、与模型概率输出格式兼容的One-Hot编码(例如。是一个关键的工具函数,用于将紧凑的整数索引标签图(例如。会在张量的最后一个维度上创建一个新的维度,其大小为。),是计算多类别分割损失的必要前提。,与模型预测的张量形状完全匹配。
2025-09-05 15:47:30
132
原创 vtk资料整理
vtkDataSet/ | \/ | \/ | \ | \/ | \ | \在实际应用中,和是最常遇到的三类数据结构,分别代表了规则的体数据、表面数据和不规则的体数据。
2025-09-03 19:14:06
695
原创 yolo8训练代码的理解
检查您的损失函数:这是最关键的一步。如果是,那么是必需的。如果是(默认情况),那么不是必需的。最佳实践:为了代码的清晰和可复现性,推荐使用默认的,并且不手动缩放loss这行可以删除)。这种方式下,无论您用多少张卡,模型的优化步长在数学上都是一致的,您只需要关心总批次大小(Global Batch Size)和学习率即可。
2025-08-29 19:06:45
914
原创 3D高斯溅射实现医疗影像内部场景渲染
报告中央切片(切片16,对应最活跃的中央脑区域)和所有切片的平均值。在标准3DGS框架中,每个高斯被投影到2D图像平面,产生一个2D椭圆溅射,其均值和协方差由3D高斯通过相机的视图和投影矩阵变换得到。然而,这种基于投影的机制从根本上不适合建模内部体积结构,原因有二:学习到的高斯集中在物体表面,内部体积大部分为空或未定义;具体来说,该方法首先在每个深度切片计算条件2D高斯溅射,确定图像平面中的2D高斯中心和影响半径,然后将这些条件2D高斯与沿深度轴的边缘1D高斯结合,形成完整的3DGS密度。
2025-08-28 17:13:11
1534
原创 CornerNet2025再研究---将目标检测问题视作关键点检测与配对
CornerNet于2019年3月份提出,CW近期回顾了下这个在当时引起不少关注的目标检测模型,它的亮点在于提出了一套新的方法论——将目标检测转化为对物体成对关键点(角点)的检测。通过将目标物体视作成对的关键点,其不需要在图像上铺设先验锚框(anchor),可谓实实在在的anchor-free,这也减少了整体框架中人工设计(handcraft)的成分。CornerNet于2019年3月份提出,CW近期回顾了下这个在当时引起不少关注的目标检测模型,它的亮点在于提出了一套新的方法论——将目标检测转化为对物体成对
2025-08-28 11:12:29
852
原创 实战 | 超准确人脸检测(带关键点)YOLO5Face工程
C++ 实现:https://github.com/DefTruth/YOLO5Face.lite.ai.toolkitYOLO5Face是深圳神目科技&LinkSprite Technologies开源的一个新SOTA的人脸检测器(带关键点),基于YOLOv5,并且对YOLOv5的骨干网络进行的改造,使得新的模型更加适合用于人脸检测的任务。并且在 YOLOv5 网络中加了一个预测5个关键点 regression head,采用Wing loss进行作为损失函数。
2025-08-28 11:06:54
1006
转载 换个角度理解关键点定位的Heatmap和Regression方法
从广泛意义上讲,不论是人体姿态估计、手部姿态估计这样的姿态估计任务,还是人脸关键点检测,甚至于目标检测任务中的BBox定位,其实都可以看成是一种关键点定位任务。对于这一类任务,目前大家的做法也基本上达成了共识,大致上可分为Heapmap-based和Regression-Based两派,在细节处理上,根据监督信息不同,又衍生出了用Heatmap监督Heatmap,用坐标值监督坐标值,以及用坐标点来监督Heatmap的Soft-argmax流派。
2025-08-28 11:03:42
93
转载 Heatmap方法是分类问题?
在关键点定位任务中,heatmap方法由来已久且性能优越,是当下非常主流的技术。今天想聊一聊heatmap方法跟我们熟悉的分类问题之间的联系。由于内容比较基础,过往的大佬见笑,也非常欢迎批评指正和交流。
2025-08-28 11:02:06
72
原创 识别+关键点检测计算瓶子角度
最初,我们将开发一个基本的 Python 脚本,该脚本能够检测水瓶的关键点,并在图像上用边界框显示它们。然后,我们需要遍历存储在 JSON 字符串中的预测结果,并绘制边界框和关键点,如以下代码所示。例如,如果您将一个水瓶放在桌子上,并且它完全直立,其底座与桌子表面平行,则其方向将被视为 90 度。此信息用于估计对象的方向,在我们的示例中,一个具有顶部和底部关键点的水瓶。然后,我们可以评估方向,如果瓶子的角度为 90 度,则认为它的位置正确;在我们的代码中,我们使用一个函数来计算模型关键点之间的角度。
2025-08-28 10:58:58
788
原创 仪表盘读数识别
优点:1、目标检测算法和ocr识别算法均源自开源算法库中SOTA模型,实现简单高效,且具备丰富的工业部署落地支持。2、没有采用传统直线检测的方式检测关键点,通过类似姿态估计的方式提高了关键点检测精度。3、提出了一种基于查表的鲁棒仪表读数方法,对于遮挡严重的情况也能较好地处理。4、通过透视变换,将形变的仪表图像修正,使得读数更加准确。仪表盘读数识别。
2025-08-28 10:54:42
1163
转载 ECV2023|仪表盘读数识别冠军方案解读
最终,我们方案的成绩如下。1、目标检测算法和ocr识别算法均源自开源算法库中SOTA模型,实现简单高效,且具备丰富的工业部署落地支持。2、没有采用传统直线检测的方式检测关键点,通过类似姿态估计的方式提高了关键点检测精度。3、提出了一种基于查表的鲁棒仪表读数方法,对于遮挡严重的情况也能较好地处理。4、通过透视变换,将形变的仪表图像修正,使得读数更加准确。1、将模型文件转换为TensorRT格式,加速推理。2、更改ocr识别模型,提升效率。引用ECV2023|仪表盘读数识别冠军方案解读。
2025-08-28 10:53:02
77
原创 基于深度学习的指针式压力表读数识别
根据检测结果,可以获取三个区域对应的三组坐标点,可以用(X_i1,Y_i1,X_i2,Y_i2 )表示,其中i=1时表示表盘区域对应的坐标点,i=2时表示指针区域对应的坐标点,i=3时表示表盘中心区域对应的坐标点;在实际使用时,由于TensorRT不支持PyTorch训练的权重模型直接进行TensorRT模型的转化,因此为了提高在NVIDIA GPU上的模型运行速度,需要先将PyTorch训练的YOLOV7权重模型转换为ONNX格式,再进一步将ONNX模型转换为TensorRT模型。
2025-08-28 10:49:18
1123
原创 clip等llm模型预研
yangjianxin1/CLIP-Chinese: 中文CLIP预训练模型Zasder3/train-CLIP: A PyTorch Lightning solution to training OpenAI's CLIP from scratch.yangjianxin1/ClipCap-Chinese: 基于ClipCap的看图说话Image Caption模型wanghaoyu1008/medm-clip: Pre-training of 3D medical image encoders base
2025-08-26 14:29:15
404
原创 医疗注册资料
目标检测算法之评价标准和常见数据集盘点-腾讯云开发者社区-腾讯云目标检测Object Detection下的P-R曲线,AP,mAP,AUC,ROC曲线详解_目标检测pr曲线-CSDN博客肺结节检测详解:FROC曲线在医疗影像中的应用-CSDN博客如何画ROC曲线和FROC曲线_深度学习中froc curve-CSDN博客FROC曲线-CSDN博客目标检测mAP_测map,confidence设置多少-CSDN博客FROC曲线-CSDN博客如何画ROC曲线和FROC曲线_深度学习中froc curve-CS
2025-08-13 17:26:47
197
原创 二值图针对内部轮廓腐蚀膨胀
及其返回的**层级(Hierarchy)**信息,快速筛选出所有父轮廓不为空的轮廓(即内部孔洞),然后对这些孔洞的蒙版进行膨胀,最后从原图中减去膨胀后的孔洞区域。: 然后,将原始图像与这张反色后的蒙版进行**“位与”**操作。: 这是一个数组,存储了所有轮廓的层级信息。在蒙版为黑色的区域(扩大后的孔洞区域),结果将变为黑色。在蒙版为白色的区域(非孔洞区域),保留原始图像的像素。这是最后一步,将扩大后的孔洞应用回原始图像。现在,这张蒙版上,扩大后的孔洞区域是。: 这是OpenCV的轮廓查找函数。
2025-08-04 15:12:18
382
原创 pose调研
【关键点检测】yolov7-pose改造——任意数量关键点检测并训练自己的数据集_人工智能_csdnn345-魔乐社区luoyoutao/FaceKeyPoints: This is a simple face key point project.jahongir7174/YOLOv8-pose: YOLOv8-pose implementation using PyTorchYOLOv8-pose(1)- 关键点检测数据集格式详解+快速训练+预测结果详解_yolov8 pose-CSDN博客YOLO11-
2025-07-26 22:32:44
4194
原创 C++ DLL调试奇案:一个“垃圾值”引发的内存血案
在开发一款高性能的3D超声重建库时,我们选择使用C++和LibTorch来实现核心算法,并通过一个纯C语言的API接口将其封装成DLL,以便C#、Python等多种语言调用。一切似乎进展顺利,直到一个诡异的Bug浮出水面。库允许用户通过一个配置结构体传入各种参数,其中一个是batch_size。调用端明确地将其设置为32,但在C++核心逻辑深处,它却变成了一个巨大的随机数,比如238532128。// 日志输出[步骤 6/8] 开始批处理重建 (Batch Size: 238532128)...
2025-07-24 17:55:20
871
原创 svd分解求旋转平移矩阵
SVD分解(奇异值分解)求旋转矩阵_奇异值分解求解旋转矩阵-CSDN博客(28 封私信 / 4 条消息) ICP的svd解法一定满足旋转矩阵的约束吗? - 知乎你不知道的SVD 算法------点云配准+绝对定向+坐标转换_svd 解算位姿 最少要几个点-CSDN博客Python求解两组三维点之间的刚体变换矩阵_python点云刚体变换-CSDN博客手眼标定难题:3D点云相机与机械臂的坐标转换-CSDN博客数值方法解出的近似旋转矩阵转化为正交的标准旋转矩阵 旋转矩阵标准化 正交矩阵_优化过程中怎么保证旋转矩
2025-07-03 17:38:33
268
原创 三维重建核心之泊松重建原理及C++实现
虽然,对于任何平滑滤波器≈F都正确,但在实践中,希望滤波器能够满足两个条件:一方面是足够窄,这样就不会过度平滑数据,另一方面是足够宽,使得p上的积分可以很好地近似于s.p处的值乘以斑块面积。由于模型表面采样的定向点与模型的隐函数之间存在积分关系,即隐函数的梯度是一个几乎处处为零的向量场(因为指示函数几乎处处为常数),除了靠近曲面的点,是等于向内曲面法线。形成向量场后,要求解函数使。因此,给定一个维向量v,它的第0个坐标是,其目标是求解函数,使得将的拉普拉斯函数投影到每个Fo上得到的向量尽可能接近v。
2025-06-27 17:36:39
1164
原创 RAS 和 LPS 三维医学图像坐标方向
它们都是用来描述三维医学图像(如CT、MRI)方向的“解剖学坐标系”,以确保无论患者在扫描时如何摆放,我们都能以统一、标准的方式来理解图像的方向。这是神经影像研究和许多开源软件(如3D Slicer, Freesurfer)中非常常用的一个。标准和许多临床影像系统及软件(如ITK的默认方向)中被广泛使用。这个坐标系同样非常普遍,尤其是在。,而 Z 轴保持不变。
2025-06-27 16:36:32
721
原创 opencv二维码
【OpenCV】(一)wechat_qrcode检测二维码_opencv_wave789-2048 AI社区(25 封私信 / 9 条消息) 使用 OpenCV + 微信二维码引擎实现二维码识别 - 知乎
2025-06-22 00:29:12
220
转载 基于拉普拉斯金字塔实现图像融合(步骤 + 代码)
最后,我们将组合拉普拉斯算子添加到原始高斯调整大小图像中,并乘以各自的掩码,从而重建每个比例的原始图像。我们重复执行此操作,对结果进行上采样,并将结果添加到组合拉普拉斯算子中,直到我们在原始比例下获得完全混合的图像。简而言之,高斯金字塔是一系列图像,从原始图像开始,原始图像缩小 1/2,原始图像缩小 1/4,依此类推。使用 alpha+(1-alpha) 组合,在每个尺度上,我们将蒙版乘以图像 A 的拉普拉斯,然后将图像 B 的拉普拉斯乘以 (1-mask) 并将两者相加。接下来,我们构建拉普拉斯金字塔。
2025-06-09 10:56:29
202
原创 channels1之GN,IN,LN异同
如果所有层都设置 affine=False (对于 LayerNorm 是 elementwise_affine=False):那么 nn.GroupNorm(1, 1, affine=False)、nn.InstanceNorm2d(1, affine=False) 和 nn.LayerNorm([1, H, W], elementwise_affine=False) 的输出将会是完全相同的,因为它们的核心归一化逻辑一致且没有后续的仿射变换。它会独立地对每个样本的每个通道内的 H*W 个元素进行归一化。
2025-06-05 16:33:04
818
原创 记录一次lambda在libtorch遇见的坑
原始代码问题是定义const int64_t c = input.size(1);实际发现lamda捕获不了局部变量c!!!deepseek给出的修改是将c。
2025-05-26 19:12:29
324
原创 混合精度计算那些事
optimizer.step(scale=scale) 更新时梯度反缩放,反缩放后梯度用的fp16还是32?,最终用于更新 FP32 主权重(Master Weights)。这里有个疑问:梯度更新显式转换为 FP32,岂不是显存又大了?梯度转换为 FP32 后反缩放,再更新 FP32 主权重。:临时且短暂,通过显存复用和异步操作几乎可忽略。:将 FP16 梯度除以缩放因子,恢复真实值。梯度计算时候用的是fp16,激活值和梯度的显存占用与。强相关,且会逐层累积。
2025-04-23 11:08:12
1290
LUNA16数据集.doc
2020-03-07
Tesseract 4.0 for VS2015及OpenCV数字识别示例程序
2018-11-05
LITS2017肝脏肿瘤分割挑战数据集.txt
2019-08-27
LITS2017肝脏肿瘤分割挑战数据集下载地址百度云.txt
2019-12-20
zbar_win64.zip
2020-04-16
Hessian矩阵以及在血管增强中的应用—OpenCV3和c++版本代码工程
2020-03-02
Promise2012_前列腺MR图像.txt
2019-08-27
多模态脑肿瘤分割挑战2018.txt
2019-08-27
opencv_hand.rar
2019-09-26
gflags.zip
2019-12-19
Netron-Setup-8.4.6.exe和picpick-inst.7.3.6.exe
2025-08-01
CAMUS 心脏分割超声图像数据集,含500名患者的超声数据
2021-01-02
openvino_insightface_fp32人脸识别模型
2020-11-22
openvino_insightface_fp32人脸识别模型
2020-11-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅