- 博客(760)
- 资源 (25)
- 收藏
- 关注
![](https://csdnimg.cn/release/blogv2/dist/pc/img/listFixedTop.png)
原创 Tensorboard可视化浏览器无法加载解决办法
解决办法:修改指定地址,进入所在log目录,终端输入命令改为C:\Users\Administrator\Desktop\标定>tensorboard --logdir=log --host=127.0.0.1
2019-07-09 23:59:31
1733
2
![](https://csdnimg.cn/release/blogv2/dist/pc/img/listFixedTop.png)
转载 【cpp中的虚函数与继承个人笔记总结】
https://www.cnblogs.com/jianyungsun/p/6361670.html继承:继承主要实现重用代码,节省开发时间。1、C#中的继承符合下列规则: 继承是可传递的。如果C从B中派生,B又从A中派生,那么C不仅继承了B中声明的成员,同样也继承了A中的成员。Object类作为所有类的基类。 派生类应当是对基类的扩展。派生类可以添加新的成员,但不能除...
2018-10-12 00:02:48
360
原创 超分辨率体积重建实现术前前列腺MRI和大病理切片组织病理学图像的3D配准
摘要:磁共振成像(MRI)在前列腺癌诊断和治疗中的应用正在迅速增加。然而,在MRI上识别癌症的存在和范围仍然具有挑战性,导致即使是专家放射科医生在检测结果上也存在高度变异性。提高MRI上的癌症检测能力对于减少这种变异性并最大化MRI的临床效用至关重要。迄今为止,这种改进受到缺乏准确标注的MRI数据集的限制。通过接受根治性前列腺切除术的患者数据,可以将切除前列腺的数字化组织病理学图像与术前MRI进行空间对齐。这种对齐通过将组织病理学图像中的癌症投影到MRI上,有助于在MRI上绘制详细的癌症标签。
2025-01-23 18:01:31
65
原创 c++的构造函数
1 列表初始化C++ 初始化列表_c++列表初始化-CSDN博客C++构造函数之初始化列表_哔哩哔哩_bilibiliC++成员初始化列表(构造函数后加冒号:){}(用于在构造函数中初始化类成员变量,可以避免使用构造函数体内的赋值语句,可以确保成员变量在对象构造之初就已经被正确初始化,提高代码的性能和可读性)_构造函数后面加冒号,跟成员变量-CSDN博客【C++】构造函数调用规则 ( 默认构造函数 | 默认无参构造函数 | 默认拷贝构造函数 | 构造函数调用规则说明 )-CSDN博客
2025-01-23 15:44:05
42
原创 c++使用小技巧1
1 指针做形参,释放内存,是值传递只修改指针的指向,不修改指针本身。2 二级指针做函数形参,可以指向指针数据,表示多个变长数据。
2025-01-23 15:20:33
35
原创 人工势场法-路径规划的理论与代码实现
通过计算引力和斥力的合力,机器人可以动态调整运动方向,避开障碍物并最终到达目标点。:接近目标点时斥力的衰减范围。,吸引机器人向目标点移动。,阻止机器人靠近障碍物。:机器人需要到达的位置。:机器人每次移动的步长。:算法的最大运行次数。:机器人的初始位置。:障碍物的位置列表。
2025-01-21 16:22:25
246
原创 std::async使用
是 C++ 中用于简化异步编程的工具,它适合多种场景,尤其是在需要异步执行任务并可能获取其结果时。对于文件读写、网络请求等 I/O 操作,通常会有较长的等待时间。如果异步任务中抛出了异常,异常会通过。可以将这些操作放到后台线程中执行,避免阻塞主线程。将这些任务放到后台线程中执行,避免阻塞主线程。当你有多个独立的任务需要并行执行时,可以使用。当你有需要长时间运行的计算任务时,可以使用。对于可以分解为多个子任务的问题,可以使用。并行执行子任务,然后在主线程中合并结果。实现生产者和消费者之间的协调后续使用。
2025-01-16 17:32:16
311
翻译 3D刚性配准
这个参数,如果配准效果不好,可以适当提高iteration的数量,但计算速度会变慢。因为需要配准的图像和原始的图像模板相比,除了位移也有旋转、以及形状上的变形。如果两个图像的采集条件不一样,例如用的不同的成像系统,或者信噪比差别较大。,将不同图像中的相应特征或点匹配在一起,以便它们在同一坐标系下对齐。单层血管的特征比较少,单层与单层配准可能因为特征不足,导致配准失败。之前的关于ImageJ的文章,介绍了怎样利用。一般希望输出图像的大小和原始图像大小一致。,是数字图像处理中非常关键的问题之一。
2024-12-19 13:48:01
34
原创 模版使用思考
函数模板提供了对函数的通用定义。可以在不同数据类型之间重用。类模板提供了对类的通用定义。可以实例化为不同的数据类型,具有更高的灵活性。首先,我们定义一个类模板Container,它有一个成员函数模板get,用于从容器中获取元素。这个类模板可以接收不同类型的对象。private:public:// 添加元素// 成员函数模板,用于获取元素// 类型转换。
2024-12-19 00:41:55
285
原创 条件编译->enable_if和 if constexpr使用区别
enable_if: 在类或函数模板的定义上决定能否实例化。这通常用于模板特化。: 在函数体内的条件编译,根据条件编译某些代码块。在选择时,如果想要基于类型启用或禁用功能,选择enable_if;如果你需要在函数内部进行条件逻辑,使用。是 C++17 中引入的一种条件编译的语法,它允许在编译时根据某些条件选择代码的路径。这种特性使得代码可以根据类型或模板参数在编译时进行选择,从而避免了在运行时进行不必要的判断和决策。在 C++11 中,因为没有,所以我们依靠模板特化和等技巧来实现条件编译的效果。
2024-12-12 13:39:26
856
原创 torch如何产生3d随机变形场(DVFs)
生成噪声后,需要将其转化为变形场,变形场通常是一个与图像尺寸相同的三维向量场,包含每个点的位移信息。创建一个网格:为输入图像创建一个与之对应的离散网格,网格中的每个点代表图像中的一个像素或体素。为每个网格点生成位移:使用生成的噪声为每个网格点分配一个位移向量,通常是一个三维向量(x, y, z)。
2024-12-07 23:39:13
1042
原创 点线面|点到两点直线距离求解
在点云库(PCL)中,计算点到直线的距离可以借助于向量运算。以下是这种计算方法的步骤以及相应的实现代码。要计算点 AA 到通过点 BB 和 CC 定义的直线的距离,可以使用以下步骤:定义两个向量:计算向量 BC 的单位向量,公式为:计算向量 AB⃗AB 在 BC^BC^ 上的投影,用来找出点 AA 到直线的投影点 DD:计算 AA 到直线的距离,即 AA 到 DD 的距离:以下是实现这种计算的 C++ 代码示例: 注意事项 特殊情况处理:如果 BB 和 CC 重合(即向量 BCBC 的长度为
2024-12-06 19:04:26
451
原创 边缘保持loss记录
这里的梯度一致性是通过使用二维卷积操作来计算 ,卷积核是一个3x3的矩阵,其中中心值(对应图像中心的像素)的权重为8,其余为-1。这种卷积核可能用于检测图像中的边缘或梯度变化。计算一个边缘感知的损失值。该函数使用Laplacian算子来检测输入和目标图像的边缘,并计算它们之间的差异作为损失。总变异损失(Total Variation Loss)用于量化图像中相邻像素之间的变化程度,以鼓励平滑。1 计算两个图的ncc 值。
2024-11-27 14:51:15
54
原创 affine_grid转onnx issue记录
affine_grid的官方链接: torch.nn.functional.affine_grid — PyTorch 2.5 documentation [ONNX] Support affine_grid_generator · Issue #30563 · pytorch/pytorch · GitHub直接转目前都不支持,下面根据上述链接另辟蹊径:方案二:实现affine_grid和grid_sample 替换网格采样和仿射网格生成器以导出到ONNX,在替换了PyTor
2024-11-25 18:16:18
67
原创 SCTransNet验证测试
SCTransNet 是PRCV 2024、ICPR 2024 Track 1、ICPR 2024 Track 2 三项比赛冠军方案的 Baseline, 同时也是多个优胜算法的Baselines.
2024-11-19 17:26:25
226
原创 nibabel读取参考nifty的空间信息,把mask数据转为nifty
【代码】nibabel读取参考nifty的空间信息,把mask数据转为nifty。
2024-11-19 10:44:07
34
原创 语义分割中OHEM在线困难样本挖掘(Online Hard Example Mining)
在线困难样本挖掘(Online Hard Example Mining, OHEM)是一种用于提高深度学习模型鲁棒性和性能的技术,特别是在目标检测、语义分割等任务中。其核心思想是在每个训练步骤中,选择最难分类的样本来进行梯度更新,从而迫使模型更好地学习这些困难样本,提高整体性能。
2024-11-18 19:20:53
111
原创 3D Faster R-CNN示意图
This is a modified version of Caffe which supports the 3D Faster R-CNN framework and 3D Region Proposal Network as described in our paper [Efficient Multiple Organ Localization in CT Image using 3D Region Proposal Network](Early access on IEEE Transactions
2024-11-18 14:13:17
42
原创 torchvision编译血泪史二
相关方案都说pip安装对应库,测试无效,因此从头开始编译zlib和libPng。版本采用libtorch:2.3.1 torchvision 0.18.1。采用cmae gui编译边都是 win32,因此采用命令行编译。
2024-11-14 14:02:59
644
原创 vs2017编译xtensor
遇见问题:xtl 库里面有xtlConfig.cmake.in但是没有xtlConfig.cmake如果你在xtl库的源代码中找到了文件,但没有找到文件,这通常意味着文件需要在构建和安装过程中由模板文件生成。
2024-11-11 19:16:59
364
原创 编码器-解码器让边缘检测再次伟大
论文提出了一种新的边缘检测方法——NBED(New Baseline for Edge Detection),旨在解决当前深度学习边缘检测方法中存在的巨大计算成本和复杂的训练策略问题。NBED基于一个纯粹的编码器-解码器架构,通过解耦位置特征和语义特征的提取过程,并设计级联特征融合解码器,以提高边缘检测的效率和准确性。
2024-11-06 17:13:23
755
原创 Flash Attention--Online Softmax
Flash Attention是目前主流的内存高效的注意力加速算法,FA主要思想就是进行分块计算注意力,Online-Softmax是FA实现的关键。本文实现5个版本的softmax,层层递进。softmax掌握Online Softmax,可以自行丝滑推导。
2024-11-06 10:31:02
314
转载 实战 | 基于检测和O实现车速检测(详细步骤 + 代码)
在一种情况下,我们可以计算每一帧的速度:计算两个视频帧之间行进的距离,并将其除以 FPS 的倒数,在我的例子中为 1/25。在一种情况下,我们可以计算每一帧的速度:计算两个视频帧之间行进的距离,并将其除以 FPS 的倒数,在我的例子中为 1/25。最后,我们将顶点A-B-C-D和的坐标分别重新组织A'-B'-C'-D'为二维SOURCE和TARGET矩阵,其中矩阵的每一行包含一个点的坐标。距离相机越远,覆盖的距离越小。这样,汽车行驶的距离明显大于闪烁引起的小盒子移动,我们的速度测量也更接近真实情况。
2024-11-04 18:59:04
48
原创 单阶段检测算法主流的标签分配方法总结
文章详解6种主流标签分配方法原理以及方法步骤。转载自丨极市平台目前主流的轻量化目标检测算法,基本都是(Anthor-base或Anthor -free)单阶段结构。主体结构主要包括Backbone、Neck、Head以及Loss。其中受限于硬件资源,Backbone主要选取轻量化的主干网络,如MobileNet系列、ShuffleNet系列等;Neck主要基于FPN的变种,意在增强深层和浅层特征的更好融合;
2024-11-04 17:37:14
661
CAMUS 心脏分割超声图像数据集,含500名患者的超声数据
2021-01-02
openvino_insightface_fp32人脸识别模型
2020-11-22
openvino_insightface_fp32人脸识别模型
2020-11-22
zbar_win64.zip
2020-04-16
LUNA16数据集.doc
2020-03-07
Hessian矩阵以及在血管增强中的应用—OpenCV3和c++版本代码工程
2020-03-02
LITS2017肝脏肿瘤分割挑战数据集下载地址百度云.txt
2019-12-20
gflags.zip
2019-12-19
opencv_hand.rar
2019-09-26
LITS2017肝脏肿瘤分割挑战数据集.txt
2019-08-27
多模态脑肿瘤分割挑战2018.txt
2019-08-27
Promise2012_前列腺MR图像.txt
2019-08-27
Tesseract 4.0 for VS2015及OpenCV数字识别示例程序
2018-11-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人