Amy_mm
码龄8年
关注
提问 私信
  • 博客:302,514
    社区:584
    303,098
    总访问量
  • 134
    原创
  • 968,376
    排名
  • 99
    粉丝
  • 0
    铁粉

个人简介:https://github.com/xuman-Amy 积跬步,至千里

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2016-10-23
博客简介:

Amy_mm的博客

查看详细资料
个人成就
  • 获得120次点赞
  • 内容获得46次评论
  • 获得622次收藏
  • 代码片获得566次分享
创作历程
  • 2篇
    2020年
  • 32篇
    2019年
  • 76篇
    2018年
  • 19篇
    2017年
  • 8篇
    2016年
成就勋章
TA的专栏
  • 招聘
  • LSTM
    6篇
  • 数据库
    4篇
  • java
    2篇
  • centos
    4篇
  • hadoop
    6篇
  • python
    30篇
  • leetcode
    40篇
  • 机器学习
    24篇
  • sklearn
    14篇
  • 深度学习
    12篇
  • 数据结构
    8篇
  • 剑指offer
    10篇
  • paper notes
    7篇
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Graph Neural Network on Electronic Health Records for Predicting Alzheimer’s Disease

下载地址:https://arxiv.org/pdf/1912.03761v1.pdfcode:https://github.com/NYUMedML/GNN_for_EHR摘要基于电子病历和图神经网络预测AD。本文根据真实的EHR能够提前12-24个月预测AD,并且在稀疏电子病历中改善了预测性能。另外,本文通过模型学习每个图结构,进一步探索了不同诊断、实验室值以及电子病历流程之间的结构关...
原创
发布博客 2020.01.09 ·
888 阅读 ·
0 点赞 ·
2 评论 ·
0 收藏

Towards Alzheimer’s Disease Classification through Transfer Learning

论文链接:https://arxiv.org/abs/1711.11117code:https://github.com/marciahon29/Ryerson_MRP摘要:利用迁移学习解决医学图像数据较少的问题。VGG和inception是通过预训练的权重进行初始化,然后在全链接成只使用少量的MRI影像进行retrain。我们通过熵来选择信息量较大的图像进行训练。数据集:OASIS MR...
原创
发布博客 2020.01.09 ·
550 阅读 ·
1 点赞 ·
1 评论 ·
6 收藏

NLP秋招持续更

【阿里钉钉】挂1. 问简历。有一些没有说太明白2. 基础知识很重要 可能是不想要我,问的是简历上没怎么写的3. CNN的工作流程https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/CNN - ...
原创
发布博客 2019.09.10 ·
589 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

two sum and path sum

汇总下leetcode的twosum 和 path sum为什么做过的还是不清楚呢 对不起我拉低 了人类的智商(哭)112. Path SumGiven a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path...
原创
发布博客 2019.08.26 ·
258 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

leetcode股票买卖问题系列

121. Best Time to Buy and Sell StockSay you have an array for which the ith element is the price of a given stock on day i.If you were only permitted to complete at most one transaction (i.e., buy o...
原创
发布博客 2019.08.23 ·
438 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

leetcode 算法题记

文章目录前言583. Delete Operation for Two Strings72. Edit Distance10. Regular Expression Matching62. Unique Paths63. Unique Paths II64. Minimum Path Sum85. Maximal Rectangle87. Scramble String前言会记录自己看过的一些...
原创
发布博客 2019.07.22 ·
343 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

剑指offer python解题

文章目录回溯法机器人的运动范围矩阵中的路径回溯法67 机器人的运动范围66 矩阵中的路径机器人的运动范围# 67 机器人的运动范围# -*- coding:utf-8 -*-import sysclass Solution: def movingCount(self, threshold, rows, cols): # write code here ...
原创
发布博客 2019.07.18 ·
1387 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

《Adversarial Transfer Learning for Chinese Named Entity Recognition with Self-Attention Mechanism》阅读

《Adversarial Transfer Learning for Chinese Named Entity Recognition with Self-Attention Mechanism》paper publisher: ACL 2018方向:NERsource code: https://github.com/CPF-NLPR/AT4ChineseNER摘要中文NER缺少大...
原创
发布博客 2019.06.16 ·
2517 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

《Deep multi-task learning with low level tasks supervised at lower layers》论文阅读笔记

《Deep multi-task learning with low level tasks supervised at lower layers》论文来源:2016 ACL论文方向:multi-task learning摘要:本文创新点: 之前的多任务学习中 task supervision都是在网络的同一层(最外层)。本文提出的一种基于双向RNN的多任务学习架构,不同的任务可以在网络...
原创
发布博客 2019.06.12 ·
907 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

《A Multi-task Approach for Named Entity Recognition in Social Media Data》论文笔记

《A Multi-task Approach for Named Entity Recognition in Social Media Data》1. 摘要:社交信息的缺点:固有的噪声信息;不当的语法结构;拼写不连续以及大量的缩写词多任务框架: 使用命名实体分割的辅助任务和细粒度的命名实体分类的主要任务进行联合训练优点:多任务学习能够从字词序列、语法信息和地名词典信息中学习到更高阶的特征。...
原创
发布博客 2019.06.11 ·
1284 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

中文序列标注系列(绪)

先立个FLAG写一个比较完善的中文序列标注系列因为最近接触的序列标注比较多,主要是做命名实体识别,区别于之前的主要是类别是多种,不仅限于人名地名机构;模型主要是用了经典的BiLSTM+CRF,BERT,以及二者结合的模型。博主渣渣,代码主要参考git上大佬的分享代码,此系列主要记录序列标注的原理,代码的注释,以及自己阅读的相关论文笔记。关于序列标注的统计学习方法主要是HMM,MEMM,CRF...
原创
发布博客 2019.05.31 ·
1163 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

sublime text3 package control无法安装

修改hosts文件C:\Windows\System32\drivers\etc\hosts 文件添加50.116.34.243 sublime.wbond.net50.116.34.243 packagecontrol.io然后ctrl+` 打开命令行 , 输入命令下载package controlimport urllib.request,os,hashlib; h = '6f4...
原创
发布博客 2019.05.20 ·
259 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CRF实现词性标注(2)——python代码说明

CRF原理说明请查看上篇博文https://blog.csdn.net/Amy_mm/article/details/89219584参考链接同上篇博文定义CRF中的初始变量,包括特征函数, 特征函数的权重, 词性标注的label也就是状态序列,以及label_id字典。 def __init__(self, feature_functions, labels): ...
原创
发布博客 2019.04.15 ·
3883 阅读 ·
0 点赞 ·
3 评论 ·
17 收藏

python numpy中的矩阵、向量的加减乘除

numpy 生成矩阵numpy中可以直接使用matrix生成矩阵X1 = np.matrix([[1,2,3]])X2 = np.matrix([[1,2,3,4]]).T 2. 矩阵相加减(1)如果矩阵是相同维度的,就直接相对应位置相加减,不在赘述~~(2)如果矩阵维度不相同如果这两个矩阵满足以下两个条件,就可以a. 一个是行向量一个是列向量b.一个多维矩阵,一个一维矩...
原创
发布博客 2019.04.14 ·
42758 阅读 ·
10 点赞 ·
0 评论 ·
45 收藏

CRF实现中文词性标注(1)——原理说明

写在前边po上看到的一个大佬的博文,这篇博客也是学习大佬的文章。文中图片也来自于参考博文。参考链接:CRF、有向图、无向图大佬的图模型大佬的CRF讲解我的知乎专栏,小白要努力了哦图模型背景Naive BayesP(X∣y)=p(x1∣y)p(x2∣y)....p(x3∣y)P(X|y) = p(x1|y)p(x2|y)....p(x3|y)P(X∣y)=p(x1∣y)p(...
原创
发布博客 2019.04.12 ·
6180 阅读 ·
6 点赞 ·
1 评论 ·
24 收藏

HMM 实现中文词性标注 以及 维特比算法原理

原理:HMM 生成式模型,利用联合概率建模,估算隐藏于观测序列背后的隐序列。POS:单词:观测序列,词性:状态序列(隐序列)HMM建模公式:P(O)=∑QP(O,Q)=∑QP(O∣Q)P(Q)P(O) = \sum_{Q} P(O, Q) \\ = \sum_{Q} P(O| Q) P(Q) \\P(O)=Q∑​P(O,Q)=Q∑​P(O∣Q)P(Q)一阶马尔科夫假设...
原创
发布博客 2019.04.11 ·
4081 阅读 ·
6 点赞 ·
1 评论 ·
17 收藏

面试题5:两个栈实现一个队列

题目描述用两个栈来实现一个队列,完成队列的Push和Pop操作。 队列中的元素为int类型。push: 直接放到stack1中pop:如果stack2中有值,就pop出来;如果没有值,就把stack1中的值全部pop到stack2中,然后stack2pop一个值# -*- coding:utf-8 -*-class Solution: def __init__(self): ...
原创
发布博客 2019.04.06 ·
240 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

面试题4 重建二叉树

面试题4 重建二叉树题目描述输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。解题报告前序遍历根左右,中序遍历左根右。1、现在前序中找到root的值,也就是pre[0]2、在中序中找到此值,并返回...
原创
发布博客 2019.04.06 ·
202 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

EDA——数据可视化

matplot和seaborn实现数据可视化模块输入参数:dataframe文件或者文件地址,想要查看的类别字段,输出:图形三种类型:分析单变量、双变量和多个变量之间的关系建议的图形有在ppt里边说明matplot和seaborn的画图是参考的参考链接之后有加上echarts的图,发现比自己画的好看百倍。附上github的地址 eda github源码...
原创
发布博客 2019.04.03 ·
1776 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

一个很有意思的赛马问题

给你64匹马,八个跑道,每次只能跑八匹马;用最少的回合找出跑的最快的四匹马(或者top1啊top2 ~~~同理der)贴个图说明吧大脑的潜能真是很无穷~~
原创
发布博客 2019.03.22 ·
2085 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏
加载更多