模型评估和超参数调整(二)——交叉验证 (cross validation)

本文详细探讨了模型评估和超参数调整的重要方法——交叉验证,包括holdout交叉验证、k折交叉验证及其变种stratified k折交叉验证。通过交叉验证,可以得到模型性能的无偏估计,诊断算法问题,并进行模型选择。文章中还介绍了如何使用sklearn库实现stratified k-fold CV。
摘要由CSDN通过智能技术生成

读《python machine learning》chapt 6 

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

【主要内容】

(1)获得对模型评估的无偏估计

(2)诊断机器学习算法的常见问题

(3)调整机器学习模型

(4)使用不同的性能指标对评估预测模型

git源码地址 https://github.com/xuman-Amy/Model-evaluation-and-Hypamameter-tuning

【交叉验证 cross-validation】

常见的交叉验证方法holdout cv ,k-fold cv

【cross-validation ----holdout CV】

【主要思想】

将数据分为三部分:训练集(training data )、 验证集(validation data) 、 测试集(test data)

训练集(training data ):fit不同的模型

验证集(validation data):用于模型选择

 测试集(test data):对于泛化到新数据的性能,能得到较小偏差的估计值

流程图:

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值