读《python machine learning》chapt 6
Learning Best Practices for Model Evaluation and Hyperparameter Tuning
【主要内容】
(1)获得对模型评估的无偏估计
(2)诊断机器学习算法的常见问题
(3)调整机器学习模型
(4)使用不同的性能指标对评估预测模型
git源码地址 https://github.com/xuman-Amy/Model-evaluation-and-Hypamameter-tuning
【交叉验证 cross-validation】
常见的交叉验证方法holdout cv ,k-fold cv
【cross-validation ----holdout CV】
【主要思想】
将数据分为三部分:训练集(training data )、 验证集(validation data) 、 测试集(test data)
训练集(training data ):fit不同的模型
验证集(validation data):用于模型选择
测试集(test data):对于泛化到新数据的性能,能得到较小偏差的估计值
流程图:

本文详细探讨了模型评估和超参数调整的重要方法——交叉验证,包括holdout交叉验证、k折交叉验证及其变种stratified k折交叉验证。通过交叉验证,可以得到模型性能的无偏估计,诊断算法问题,并进行模型选择。文章中还介绍了如何使用sklearn库实现stratified k-fold CV。
最低0.47元/天 解锁文章
——交叉验证 (cross validation)&spm=1001.2101.3001.5002&articleId=79902414&d=1&t=3&u=d6f90eab1f514efba6bb4f5099698e87)
1180

被折叠的 条评论
为什么被折叠?



