其实很多人都说是打表找个规律就过了,不过既然我们是来学分块的,当然要用相应的知识去做,考试的时候再打表 。
分块可以把一些O(n)或复杂度更高的过程优化到O(√n)。对于整数n及i(1 < i < n),floor(n/i)的结果最多有2√n种(分i <√n和i > √n两种情况来考虑一下),又floor(n/i)相等的i可能有多个,手写式子简单推一下可以算出来满足floor(n/i)==d的所有i,其所处的区间为[i,floor(n/(n/i))]。这样我们就可以划分出最多2√n个区间。
好了到这里我们就学会了分块(?)。
看题:余数之和
看完题自己写了几组数,发现分块后的每个区间内,k%i组成公差为k/i的等差数列,对每个区间求和累加就是最终答案。
AC Code:
#include <iostream>//开始时想错了,代码改了几次,有点乱了
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <string>
#include<cmath>
#define ll long long
using namespace std;
int main()
{
ll n,k,ans=0;
ll l = 2,r;
cin>>n>>k;
if(n > k)
{
ans += (n - k) * k;
n = k;
}//n比k大的部分很好算,主要是n<k的部分要分块
while(l<=n)
{
r=k/(k/l);
if(r>n)r=n;//注意r不能越界,这里一开始没注意到就wa了一发
ll cnt=(r-l)+1;//区间长度,等差数列项数
ll a1=k%l;//首项
ans+=a1*cnt-(k/l)*cnt*(cnt-1)/2;
//cout<<l<<" "<<r<<"\n";
l=r+1;//找下一个区间
}
cout<<ans;
return 0;
}
(终于不是数论只会gcd的菜比了233)