首先我们可以想一想,那个k长的子序列会是什么?这就衍生出两种情况:
设n长序列中不重复的数字个数为 len
①len > k, 此时我们是无法构造出一个符合条件的数组的。
如下
1 3 5 (k = 2, n = 3)
1 3 1 3 1 3 … 5
5永远不会消去。
因为我总可以找到一个k长子序列不包含5,也总可以找到一个k长子序列包含5, 与题目矛盾,故不可。
②len <= k,这是我们就一定可以找出一种情况解决问题。
那么我们就可以直接全部打印这个去重过的序列, 打印n遍,不足的用1(或其他任何数字)。
相当于把每一个数字搞成一个小循环,一共n个小循环, 每个循环k个, 故一共n*k个数字。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
int vis[10000], num[1000];
int main(){
int t;
cin >> t;
while(t--){
memset(vis, 0, sizeof(vis));
memset(num, 0, sizeof(num));
int n, k, len = 0;
cin >> n >> k;
for(int i = 1;i <= n;i++){
int temp;
cin >> temp;
if(vis[temp])continue;
else{
vis[temp] = 1;
num[++len] = temp;///去重
}
}
if(len > k)printf("-1");//第一种情况
else{
cout << n*k << '\n';///n*k个数
while(n--){///n个小循环
for(int i = 1;i <= len;i++)
cout << num[i] << ' ';
for(int i = 1;i <= k - len;i++)
cout <<"1 ";
}
}
if(t)
cout << '\n';
}
}