当前搜索:

vim 常用快捷键及使用技巧

使用前需要知道的 vim 是对vi的扩展,文中的很多操作是vi通用的 vi是区分大小写的命令的,也就是说 g与G 是不同的命令 在不同模式下,快捷键是不一样的 模式分 一般模式 编辑模式 指令模式 一般模式用于文件内部操作,编辑模式用于输入编写等,指令模式用于对文本文件进行操作 常用操作 进入一...
阅读(160) 评论(0)

科技盛宴---记2017云栖大会(杭州)

第一次参加云栖大会,感受到了一场科技盛宴,作为曾经的阿里人(今年的暑期实习生),深感自豪。首先给我们部门先打个广告: IDST(Institute of Data Science & Technologies),中文名是数据科学与技术研究院,是阿里NASA计划的一部分,主要是前沿算法...
阅读(270) 评论(0)

CGAN结构详细解读

前言本文适用于对CGAN结构不懂得同学,所谓CGAN,就是conditional Gan,针对GAN本身不可控的缺点,加入监督信息,指导GAN网络进行生成。CGAN结构y就是加入的监督信息,比如说MNIST数据集可以提供数字label信息,人脸生成可以提供性别、是否微笑、年龄等信息;我们具体分析的...
阅读(831) 评论(0)

DCGAN结构解读

DCGAN的原文里面给出的结构如下: 这是G的结构,而D则是完全相反的: 刚看论文的时候觉得结构很清晰,但是实际写代码的时候并不是很能够清楚表示,相信有很多人也是这种感觉,因此这边做一个分析,以便后面的同学理解。这里面涉及到一个名词叫fractionally-strided convoluti...
阅读(391) 评论(0)

Tensorflow-GPU版本安装(Ubuntu14.04LTS+Cuda8+Quadro K1200)

前言之前装过Caffe,踩过一些坑,现在装Tensorflow相对从容一些,不过还是值得记录一下流程。我的系统配置是:系统:Ubuntu 14.04LTS 显卡:Nvidia Quadro K1200 CUDA 8.0安装1.安装必要的一些库sudo apt-get install build-e...
阅读(573) 评论(0)

Ubuntu14.04 python 升级为3.5 && virtualenv安装

系统默认的python 版本是2.7.6和3.4.3,升级可执行下面的命令: sudo add-apt-repository ppa:fkrull/deadsnakes sudo apt-get update sudo apt-get install python3.5 sudo cp /usr/...
阅读(598) 评论(0)

Generative Adversarial Nets (GAN)解读

会议:NIPS 2014 Introduction GAN,生成对抗式网络是是Ian Goodfellow经典的大作,引起了很大的轰动,后面的各种GAN也层出不穷。追根溯源,为了了解GAN,需要从这篇开山之作说起。那GAN到底是什么?简单来说,GAN由两个模型组成,一个是生成模型G,一个是判别...
阅读(405) 评论(1)

GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence解读

介绍 特征匹配时很多计算机视觉算法的基础,因此速度、准确率和健壮性都是很重要的因素,目前在速度和健壮性上还存在很大的gap。主要问题在于使用在更强大的特征一致技术的一致性约束(相邻的像素运动是相似的)。一致性约束是强大的限制但是稀疏的特征缺乏定义良好的邻居,这就导致基于一致性的技术计算代价昂贵并...
阅读(2505) 评论(0)

Visualizing and Understanding Convolutional Networks(ZF-Net)解读

会议: ECCV 2014 Introduction 自从AlexNet出现出现之后,大量的CNN都冒出来取得了很好的分类效果,但是,存在有两个问题,一个是对CNN为什么能够表现得如此之好并不清楚;二是他们的表现怎么能够提升;这篇论文探索的就是这两个问题,同时提出的ZF-Net取得了ILSVR...
阅读(531) 评论(0)

2017算法实习生应聘经验总结

---------------------------------------------2017年4月29号更新------------------------------------------ 收到阿里录用通知后,心里的一块石头也放下了,回顾过去两个月的笔试和面试经历,有些感慨,遂...
阅读(1000) 评论(0)

2017阿里算法实习生招聘HR面回顾

--------------------------------------2017年4月26号更新---------------------------------------------- 今天大概晚上七点四十阿里HR打来电话面试,等了好久终于还是来了。。。。。。回顾一下整个过程 1. 稍...
阅读(893) 评论(0)

Fast R-CNN解读

Introduction 由于检测的复杂性,目前的一些模型都是多阶段的训练过程,首先是得到region proposals,然后提取region feature,预测bounding box, 最后进行精修,这一系列过程并不是端到端的,需要存储大量的中间特征,耗费大量的空间,并且训练过程很慢,也...
阅读(507) 评论(0)

ubuntu下命令行调试Python程序

Python提供类似于C++ gdb的调试工具pdb,我们可以在Linux下使用pdb在命令行下进行Python程序的调试。  官方参考网站:  Python2: https://docs.python.org/2/library/pdb.html  Python3: https://doc...
阅读(2127) 评论(0)

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPP-Net)解读

论文发表在ECCV2014 作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun Introduction CNN 在视觉领域虽然取得了很大的成就,但是一直存在一个技术问题是CNN都需要一个固定的图片大小,比...
阅读(1674) 评论(0)

Deep Residual Learning for Image Recognition(ResNet)残差网络解读

Kaiming 的Resnet在2015年横扫各大视觉主流比赛榜单,对工业界和学术界都产生了巨大而深远的影响,论文拿下了CVPR2016的best paper award。首先来看看ResNet的威力: 不仅拿了第一,还超过第二一大截。我们就来看看ResNet的神奇之处。 Is learn...
阅读(2037) 评论(0)

Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution解读

微调已经在很多视觉任务上都有一个state-of-art的performance,比如说追踪,分割,物体检测,动作识别等等。但是不同的微调方法对结果也是不一样的,这篇论文主要探索了物体检测上微调中对performance的影响因素。经验和分析结果都告诉我们有更多样本的类对feature learn...
阅读(482) 评论(0)

GoogLeNet( Going deeper with convolutions)解读

Introduction GoogLeNet是业界经典的一种深度结构,整个网络有22层,之所以称为GoogLeNet,作者说是为了致敬Yann LCun 的LeNet。 从LeNet-5开始,CNN有一个很标准的结构,一堆卷积层,后面可能跟上Norm和max-pooling层,然后接上一层...
阅读(638) 评论(0)

caffe finetuning CaffeNet流程总结

所谓finetuning,就是说我们针对某相似任务已经训练好的模型,比如CaffeNet, VGG-16, ResNet等, 再通过自己的数据集进行权重更新, 如果数据量比较小,可以只更新最后一层,其他层的权重不变,如果数据量中等,可以训练后面几层,如果数据量很大,那OK,直接从头训练,只不过在训...
阅读(3492) 评论(0)

tensorflow提取VGG特征

我们知道,再网络训练好之后,只需要forward过程就能做预测,当然,我们也可以直接把这个网络当成一个feature extractor来用,可以直接用任何一层的输出作为特征,根据R-CNN论文对Alexnet的实验结果,如果不做fine-tuning,pool5和fc6和fc7的特征效果并没有很...
阅读(6451) 评论(1)

2017天猫算法工程师面试

---------------------------------------------------------------2017年4月1号更新-------------------------------------------------------- 一面: 一面是基础面,首先问了一些项...
阅读(1124) 评论(0)
    个人资料
    等级:
    访问量: 37万+
    积分: 5385
    排名: 6279
    最新评论