通俗易懂理解spark的DAG

Spark的DAG(有向无环图)是其执行模型的关键,将作业分解为Stage和Task实现并行处理。DAG调度器负责转换操作为DAG,通过血缘关系实现容错。理解并优化DAG有助于提升Spark作业的性能和容错能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DAG简介

百度百科对DAG的解释用一句话概括:无回路有向图

Spark的DAG(有向无环图)是一个基本概念,在Spark执行模型中起着至关重要的作用。DAG是“定向的”,因为操作是按特定顺序执行的,而“非循环的”是因为执行计划中没有循环或循环。这意味着每个阶段都取决于前一阶段的完成情况,并且一个阶段中的每个任务都可以独立运行。
在这里插入图片描述

在高层,DAG表示Spark作业的逻辑执行计划。提交Spark应用程序时,Spark会将应用程序代码中指定的高级操作(如transformation和action)转换为stage和task的DAG。

DAG在Spark中的重要性

Spark中对DAG的需求源于这样一个事实,即Spark是一个分布式计算框架,这意味着它被设计为在多台服务器组成的集群上运行。为了在集群中有效地执行Spark作业

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SunnyRivers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值