android中的深度学习——快速风格迁移

本文介绍了如何将快速风格迁移的前馈神经网络通过Tensorflow for Android应用于图片处理APP MyPhotoShop,讨论了其效果和缺点,如速度慢。深度学习和神经网络的概念被解释,包括训练和测试过程。在Android中使用Tensorflow进行模型部署的步骤也被详细说明。
摘要由CSDN通过智能技术生成

原文作者:微信公众号:世界上有意思的事

原文链接:
https://juejin.cn/post/6844903607943299085

最近学了近一个月半月的深度学习,所以想检验一下学习成果。正好毕设是图像处理APP的实现,所以就把快速风格迁移的前馈神经网络通过Tensorflow for Android移植到了APP上面,作为滤镜快速风格迁移的效果还挺不错,就是速度有点慢。可能和现在Android端的深度学习还不支持gpu有关吧。

关于MyPhotoShop

这是一个图片处理APP,里面使用了Opencv、深度学习、MVVM、Databinding、RxJava、各种设计模式等等,在后面一段时间我会写一系列博客来一步步剖析这个项目,希望大家能多多关注。

效果

 

 

 

缺点

  • 1.没有组件化
  • 2.没有混淆
  • 3.有些地方抽象不够

深度学习和神经网络的基本概念

什么是深度学习

  • 1.AI--》机器学习--》深度学习,前面三个概念是递进的,简单来说深度学习是机器学习的一种,深度学习就是利用机器来学习很多数据,而机器学习又是实现AI的一种方式。
  • 2.在深度学习中有两个重要的东西:数据和神经网络。在深度学习中有两个重要的过程:训练和测试 1.数据和网络: 1.数据:我们想象一个简单的图片分类场景,我们有10000张已经被人工分好类的图片,每张图片都有一个正确的分类,比如猫、狗等等。 2.网络:这里的神经网络
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值