- 博客(947)
- 收藏
- 关注

原创 大模型的训练与应用 | 二十二、DeepSeek API 申请与使用指南
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频,免费分享!
2024-08-01 15:13:51
21483
1
原创 为什么需要 AG-UI?一文详细剖析AG-UI 架构设计!
随着 AI Agent 在企业中应用越来越广,AI Agent 在落地过程中,MCP 解决了 AI Agent 到 Tools 之间的通信标准,A2A 解决了 AI Agent 到 AI Agent 之间的通信标准。但是。。AG-UI 让你能够轻松地在网页、APP、应用程序或嵌入式设备中集成 AI 助手、AI 客服和智能问答 UI,避免了为每个应用程序重复开发基础功能的麻烦,也省去了处理交互逻辑的烦恼。AG-UI 完善了 AI 协议栈,专注于构建 AI Agent 与用户前端之间的桥梁。
2025-06-12 11:52:38
636
原创 一文详解RAG7大核心概念(向量数据库、混合检索、分块、嵌入与索引、重排序、上下文融合.....)
所谓RAG(Retrieval - Augmented Generation),即信息检索(Retrieval)+内容生成(Generation)。通过 RAG,可以让大模型从指定的内部知识库“检索”准确的内容,再根据准确的内容“生成”回答内容,从而有效避免幻觉。比如,如果直接让大模型进行医疗诊断,由于大模型的本质是概率模型,因此它会提供大量错误或者不相关的信息。有了RAG,大模型就可以从海量的医学文献、病例库中直接检索与患者病症相关的知识,再生成诊断建议供医生参考,从而提高内容的准确性。
2025-06-11 19:45:17
476
原创 Embedding模型选型指南 | 如何选择最合适的Embedding模型?
通过将原始输入转化为固定维度的高维向量以捕捉语义信息,Embedding(嵌入)模型在构建 RAG、推荐系统,甚至自动驾驶模型训练中都发挥着极为关键的作用。近年来,OpenAI、Meta、Google、阿里、腾讯等科技巨头纷纷加大对 Embedding 模型研发的投入。以 OpenA I为例,其最新推出的 text-embedding-3-small 模型能够生成1536维向量,在保持高语义表达能力的同时,实现了更低的延迟和更小的模型体积,非常适合对性能要求较高的大规模语义检索场景。阿里和腾讯最近也推出了
2025-06-11 19:16:23
512
原创 从零构建大模型,从理论到实践,手把手教你打造自己的大语言模型(非常详细)看这个一篇就够了!
在大语言模型(LLM)成为AI时代核心驱动力的今天,很多开发者和研究者都渴望理解其原理,并尝试自己动手训练一个大模型。然而,大多数资料或过于抽象,或高度依赖已有框架封装,缺乏系统性的指导。。它不仅讲透了大模型的基本原理,更从实际出发,带领读者从最底层一步步构建出一个完整的GPT风格的模型,实现训练、微调和部署。这是一本将理论与实践完美结合的指南,无论你是研究者、工程师,还是AI初学者,都能从中受益良多。本书不是泛泛而谈的LLM概念介绍,而是——从文本预处理、词嵌入、注意力机制、
2025-06-11 11:28:45
405
原创 大模型论文 | LightPROF:基于知识图谱的大语言模型轻量级推理框架
随着更多大语言模型(LLM)的出现,其持续提升的性能为自然语言处理(NLP)领域带来了重大创新。在庞大数据量和海量参数下展现的"突现能力",使LLM在复杂零样本任务中表现卓越。尽管效果显著,LLM在知识密集型任务中仍面临挑战:由于缺乏任务特定的先验知识和理解能力,以及模型训练的高成本耗时性,导致知识库持续更新困难。为解决这些问题,研究者提出通过知识图谱(KG)为LLM提供可靠且持续更新的知识库,以支持更精准可解释的推理。KGQA作为典型的知识密集型任务,现有工作探索了多种LLM与KG协同推理方法。
2025-06-10 19:30:00
604
原创 一文详解混合专家架构!LLaMA 4“混合专家MOE”如何重新定义下一代AI模型标准?
通过这篇文章的分析和实现,我们揭示了MoE架构如何在保持计算效率的同时,扩展模型容量。这正是LLaMA 4突破性能瓶颈的关键所在。稀疏路由、专家负载均衡等技术的应用,不仅让模型更高效,也为下一代大型语言模型的发展提供了宝贵思路。
2025-06-10 19:00:00
679
原创 AI大模型企业落地 | 一文解析Dify、RAGFlow、n8n
过去的两年里,AI可谓席卷各行各业,企业用AI,大家都面临着这样一个问题:AI这么强大,我的企业如何能充分用起来?如何能用好AI?如何能更安全更便宜地使用AI?所以今天就给大家介绍下,企业AI落地开源三剑客:Dify、RAGFlow、n8n。
2025-06-10 13:58:11
571
原创 构建多智能体AI应用框架详解(六)什么是Autogen、LangGraph?使用 Autogen、LangGraph构建智能体
Autogen[21]是一个开源框架,用于构建智能体系统。你可以使用它来构建多智能体协作机制以及基于 LLM 的工作流。
2025-06-09 20:30:00
563
原创 构建多智能体AI应用框架详解(五)什么是CrewAI?使用CrewAI创建你的第一个AI智能体
是目前最受欢迎的智能体框架之一。它可以帮助你快速构建 AI 智能体,并将其与最新的 LLM(大型语言模型)以及你的代码库集成。包括 Oracle、Deloitte、Accenture 等大型企业都在使用并信任该框架。
2025-06-09 19:00:00
1567
原创 构建多智能体AI应用框架详解(四)什么是Swarm?构建一个基础的Swarm智能体
Swarm [14]是由 OpenAI 最近发布的一个开源实验性智能体框架,是一个轻量级的多智能体编排框架。:本文撰写时,Swarm 仍处于实验阶段。它可用于开发和教育目的,但。该状态可能会有所变化,请查看上方的 GitHub 仓库以获取最新信息。Swarm 通过Agents(智能体) 和作为抽象概念,实现智能体间的协调与编排。它是一个轻量级框架,可高效地进行测试与管理。Swarm 的智能体组件可以配备工具、指令和其他参数,以执行特定任务。
2025-06-09 11:31:21
905
原创 构建多智能体 AI 应用框架详解(三)使用 Agno 构建高级/多智能体系统
前一节介绍了如何使用 Agno 和 OpenAI 构建一个基础 AI 智能体,并通过 Yahoo Finance 获取金融数据。本节将在此基础上进行扩展,将该智能体升级为一个多智能体系统(由多个智能体组成的团队)。之前的智能体示例只解决了一个单一且具体的问题。现在我们可以利用多智能体的能力,创建一个由多个智能体组成的团队,让每个智能体承担特定职责,从而共同解决复杂问题。该智能体团队将包含两个成员,他们将协同工作:一位负责从网络搜索信息,另一位负责总结指定公司的财务数据。
2025-06-07 18:02:07
801
原创 构建多智能体 AI 应用框架详解(二)使用 Agno 和 OpenAI 构建基础 AI 智能体
是一个基于 Python 的框架,用于将大型语言模型(LLMs)转换为 AI 产品中的智能体。它支持主流供应商的闭源和开源语言模型,如 OpenAI、Anthropic、Cohere、Ollama、Together AI 等。借助内置的数据库与向量存储支持,你可以轻松将 AI 系统与 Postgres、PgVector、Pinecone、LanceDb 等数据源集成。通过 Agno,你可以构建基础型智能体,也可以通过函数调用、结构化输出、微调等能力构建高级智能体。
2025-06-07 17:53:37
917
原创 构建多智能体 AI 应用框架详解(一)什么是智能体(Agent)?为什么使用多智能体 AI 框架?智能体的基本结构
大型语言模型(LLMs)可以自动化复杂且具有连续性的工作流和任务。例如,你可以使用 LLM 构建一个助手,能够在应用内自主为你下单购买商品并安排送货。这类基于 LLM 的助手被称为“智能体(Agent)”。一个智能体是由 LLM 驱动的助手,被赋予特定的任务和工具,以完成这些任务。在其基本形式中,一个典型的 AI 智能体可能配备有用于存储和管理用户交互的记忆系统,能与外部数据源通信,并使用函数来执行任务。餐厅预订。
2025-06-07 11:49:13
952
原创 大模型应用开发 | 一文详解基于DeepSeek+RAGFlow的企业知识库搭建!
RAGFlow 是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。
2025-06-07 11:06:37
871
原创 大语言模型(LLM) | 一文解析RAG的5种分块策略
在构建高效的大语言模型(LLM)应用时,数据分块是至关重要的预处理步骤。通过将大型数据文件智能分割为适当大小的片段,我们能够为LLM精准提供执行特定任务所需的信息量 - 既不会因信息过载而影响性能,也不会因信息不足而降低输出质量。为了方便大家更好了解RAG的分块,将分块策略进行一些回顾和总结。
2025-06-06 10:40:43
531
原创 大模型论文 | 知识图谱、大模型与幻觉:自然语言处理的视角
大型语言模型(LLMs)已经彻底改变了基于自然语言处理(NLP)的应用,包括自动化文本生成、问答系统、聊天机器人等。然而,它们面临一个重大挑战:产生幻觉,即模型生成听起来合理但实际上错误的内容。这削弱了信任,并限制了LLMs在不同领域的适用性。另一方面,知识图谱(KGs)提供了结构化的互联事实集合,以实体(节点)及其关系(边)表示。
2025-06-06 10:02:44
730
原创 大模型RAG技术解析,从基础原理到优化实战(三)RAG 有哪些缺点?
如果知识库不完整,过时,或者噪声多,检索到的内容可能不相关或者错误,导致生成的答案质量下降。解决方案: 定期更新知识库(实时爬取权威数据源):固定大小的分块可能截断关键信息。答案可能分散在多个 chunk 块中。解决方案:动态分块(按照语义边界切分,如段落,章节·):向量检索(如余弦相似度)可能返回语义相关但无实际答案的文档。(如查询“如何治疗感冒?”,可能检索到“感冒症状描述”而非治疗方案)。解决方案: 引入重排序(Re-rank)模型(如交叉编码器);混合检索(结合关键词检索,如 BM25)。
2025-06-04 20:45:00
505
原创 大模型RAG技术解析,从基础原理到优化实战(二)RAG优化
用正则表达式或者 DOM 解析器(如 BeautifulSoup)按照逻辑结构(标题,段落)分块。适合结构化文档,但是需要手动设计分割规则。
2025-06-04 20:15:00
1392
原创 大模型RAG技术解析,从基础原理到优化实战(一)什么是RAG?RAG流程
RAG) 是一种无需微调即可扩充模型知识的常用方法。借助 RAG,可以从数据库中检索上下文文档,以提高答案的准确性。因为 LLM 大模型通过海量数据进行训练,数据是有时效性的。如果询问最新的文档或者一些专业领域的知识,LLM 是无法回答的。所以(RAG) 通过将你的数据添加到 LLM 已有的数据中来解决此问题。
2025-06-04 19:45:00
1305
原创 阿里通义团队开源VRAG-RL:视觉感知与多模态推理的深度融合,迈向下一代检索增强生成
传统RAG方法在处理视觉信息时,往往采用固定的检索-生成流程,即先通过搜索引擎检索相关信息,然后直接生成答案。这种固定流程忽略了视觉信息的独特性,无法充分利用视觉数据中的丰富细节,导致推理能力受限。相比之下,VRAG-RL彻底革新了传统的检索生成范式,引入了多样化的视觉感知动作,其中包含了多种视觉感知动作,如区域选择、裁剪、缩放等。这些动作使VLMs能够从粗粒度到细粒度逐步聚焦信息密集区域,精准提取关键视觉信息。
2025-06-03 20:16:01
561
原创 大模型论文 | 阿里开源QwenLong-L1:首个以强化学习训练的长上下文推理大模型
LRMs 在通过强化学习(RL)提升了推理能力,但,扩展到长文本场景(如)仍然是一个未解决的挑战,为此,阿里提出并开源了框架,首个通过强化学习训练用于长文本情境推理的长文本情境大型推理模型(LRM)。优于OpenAI-o3-mini和Qwen3-235B-A22B等旗舰LRMs,其性能与相当,展现出在最先进的LRMs中领先的性能。QwenLong-L1是一个新颖的强化学习 (RL) 框架,旨在促进 LRM 从短上下文熟练度向稳健的长上下文泛化能力的转变。
2025-05-29 09:00:00
1282
原创 一篇搞懂!图解LLM(大语言模型)的工作原理
在 x上看到有人分享一组图解 LLM 工作原理的帖子,内容通俗易懂,就搬运过来汉化一下,和大家一起学习!
2025-05-28 11:28:50
1008
原创 大模型论文 | HiRAG:基于层级知识索引和检索的高精度RAG
Year: 2025检索增强生成(Retrieval Augmented Generation,RAG)通过检索外部知识增强大语言模型(Large Language Models,LLMs)的领域任务能力。朴素RAG方法检索与查询相关的文本块,这些文本块作为大型语言模型生成响应的参考,用于缓解“幻觉”问题(如生成不准确内容),然而朴素RAG方法仅检索文本片段,忽略了实体间的关联(如“亚马逊”与“AWS”的关系),导致上下文碎片化。
2025-05-28 11:25:14
951
原创 大模型入门到精通!一文搞懂大模型的向量化(Embedding)
Embedding(嵌入)是大语言模型(如 BERT 和 GPT)的核心组件,其作用是将人类语言转换为机器能理解的数值向量。这一过程类似于为每个词、子词或符号赋予一个“数字身份证”,使得模型能够捕捉语义信息,让相似的词(如“快乐”和“高兴”)在向量空间中距离更近。
2025-05-23 19:38:23
511
原创 零基础小白怎么入门大语言模型(LLM)?(非常详细)AI大模型入门到精通,看这一篇就够了!
真的想入门大语言模型,只看这一个文章应该是可以入门的。但是修行下去,还是要靠自己的了!如果你把大语言模型/LLM 当成一门技术来看,那就要看一下这门技术需要什么。
2025-05-16 11:20:53
459
原创 MCP 架构设计演进 | 从 Local MCP Server 到 Remote MCP Server 开源架构设计实现
Model Context Protocol(MCP)模型上下文协议(如下图所示)是 Anthropic 发布的一种标准化协议,使得 Agent 智能体应用可以更快捷地与下游异构的数据或者工具进行交互。最近,两大关键事件标志着 MCP 已从一方面,OpenAI 正式宣布跟进 Anthropic 的 MCP 协议,另一方面,Anthropic 发布了新版本 MCP 协议,在的场景进行了显著改进。
2025-05-15 19:43:11
1013
原创 大模型入门到精通!一文解析模型蒸馏Distillation
DeepSeek在模型轻量化与性能迁移领域展现出了卓越的技术实力,其核心创新在于数据蒸馏与知识蒸馏的协同应用。通过蒸馏技术,DeepSeek能够将具备强大推理能力的大型教师模型(例如参数规模高达 6710 亿的 DeepSeek R1 大模型)中的核心知识高效压缩并迁移至轻量级学生模型(例如仅含 70 亿参数的 Qwen 7B 模型),在保持推理精度的同时显著降低模型部署成本。
2025-05-13 20:03:36
941
原创 一文深入解析MCP!
特性StdioSSE通信方式本地进程管道HTTP长连接+SSE标准HTTP+动态流式升级适用场景本地隐私数据处理实时远程通知(逐步淘汰)云原生、分布式系统网络依赖无必需必需多客户端支持否是是协议演进长期支持即将废弃官方推荐替代方案选择建议本地开发:优先使用Stdio,简单高效。远程服务:直接采用Streamable HTTP,避免SSE的技术债务。MCP协议正朝着无状态化和云原生方向演进。2025年路线图中,官方将重点支持远程安全连接(如OAuth 2.0认证)和服务发现。
2025-05-09 14:20:59
637
原创 大模型论文 | RAKG:文档级检索增强知识图谱构建
的本体框架与模式约束,实现了有限领域的高精度知识抽取,但其高昂的维护成本与僵化的知识表示方式难以应对开放域文本的动态性与语义多样性。近年来,深度学习技术的突破为自动化知识图谱构建注入了新动力。在命名实体识别(Named Entity Recognition,NER)领域,研究范式经历了从规则驱动到数据驱动的转变。
2025-05-06 17:36:40
759
原创 2025零基础入门大模型!完整系统的大模型学习路线指南(非常详细)看这一篇就够了!
对于零基础或者是自学者来说,学习AI大模型确实可能会感到无从下手,这时候一份完整的、系统的大模型学习路线图显得尤为重要。它可以极大地帮助你规划学习过程、明确学习目标和步骤,从而更高效地掌握所需的知识和技能。下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!保证100%免费。
2025-05-05 19:49:59
1020
原创 大模型入门指南:模型训练(Training)全解析!看这一篇就够了!
Training(模型训练)本质是AI世界的‘科学烹饪实验’——以数据为食材原料,用超参数作配方比例,借验证集做品控质检,将‘玄学炼丹’的试错过程,淬炼成‘可复现的精密工程’。今天用最通俗的话,带你拆解模型训练(Training)全过程。
2025-05-04 08:15:00
1201
原创 深度解析Agent实现(四)自主化演进、多Agent、MCP
看了许多关于人工智能的学术文章与技术论文之后, 深切体会到,唯有将这些理论付诸实践,将其转化为文字和具体的代码,才能真正感受到当下大型语言模型(LLM)所蕴含的非凡魅力,这种从认识到实践的过程,不仅加深了技术理解,更是一场思想深度对话,Agent相关的研究还有很多,希望这篇文章对大家有帮助。
2025-05-03 07:45:00
611
原创 深度解析Agent实现(三)几个场景的实验
看了许多关于人工智能的学术文章与技术论文之后, 深切体会到,唯有将这些理论付诸实践,将其转化为文字和具体的代码,才能真正感受到当下大型语言模型(LLM)所蕴含的非凡魅力,这种从认识到实践的过程,不仅加深了技术理解,更是一场思想深度对话,Agent相关的研究还有很多,希望这篇文章对大家有帮助。
2025-05-02 04:30:00
762
原创 深度解析Agent实现(二)LLM、Memory、Tools、Planning、Agent、Prompt
接下来围绕Agent几个核心要素进行设计,会先简单介绍一些基本的原理,然后基于OpenManus做二次设计或者展示其原来的实现。
2025-05-01 08:45:00
1068
原创 深度解析Agent实现(一)AI Agent的核心要素
AI Agent将使软件架构的范式从面向过程迁移到面向目标,就像传统面向过程的工作流和K8S的声明式设计模式一样, 当然这两种解决的问题是不一样的, K8s通过定义期望状态而非具体步骤来管理集群,降低集群状态管理的复杂度,确保集群的稳定性和容错性。Agent之前,传统的软件架构,只能解决有限范围的任务, 而基于Agent的架构,可以解决无限域的任务,真正意义上的个性化服务。我们可以从Manus的官方网站看到,Manus宣称可以做如下的事情,并提供了相当丰富的案例。
2025-04-30 19:45:00
619
原创 RAG检索增强生成 | 一文深入剖析RAG的原理
RAG作为AI精准回答的“密钥”,其效果高度依赖于文档处理的质量。杂乱无章的知识库只会让AI“越帮越忙”,而结构化、高质量的文档则能让RAG如鱼得水。无论是企业还是开发者,通过统一文档格式、精炼内容、构建结构化知识库等方法,都能显著提升RAG的实用价值。
2025-04-30 15:24:16
926
原创 Github超过46.9k Star的神书《从零构建大模型》(附中英文版PDF)
在《从零构建大模型》这本书中,你将逐步了解大语言模型(LLMs)如何从内到外工作,自己动手编写代码,逐步构建一个LLM。在这本书中,将通过清晰的文字、图示和示例,带您完成构建自己LLM的每一个阶段。《从零构建大模型》本书描述的训练和开发自己的小型功能性模型的方法,旨在教育用途,类似于用于创建大规模基础模型(如ChatGPT背后的模型)的方法。此外,本书还包括加载更大预训练模型权重进行微调的代码。
2025-04-30 09:15:00
274
原创 大模型入门指南,小白也能看懂的“训练存档”全解析
刚接触大模型论文时,看到满屏的“CheckPoint”是不是瞬间头大?别慌!其实它就像游戏里的自动存档——关键时刻能救你“命”,还能让模型“越练越聪明”。今天用最通俗的话,带你拆解CheckPoint(检查点)如何实现模型“训练存档”。
2025-04-29 11:03:05
772
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人