- 博客(1033)
- 收藏
- 关注

原创 大模型的训练与应用 | 二十二、DeepSeek API 申请与使用指南
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频,免费分享!
2024-08-01 15:13:51
23140
1
原创 LLM智能体工具开发,MCP协议与5大核心原则
这段话的核心在于对“工具”在 AI Agent 语境下的新定义,以及为什么为 Agent 设计工具需要和传统软件开发完全不同的思路。首先,传统的计算机系统是确定性的,也就是说,只要输入一样,输出就一定一样。比如你调用 getWeather(“NYC”) 这个函数,每次都会返回同样的纽约天气数据。这种情况下,开发者和系统之间的“契约”是非常清晰和可控的。但 AI Agent(比如大模型驱动的智能体)是非确定性的。即使输入完全一样,Agent 也可能给出不同的回答。比如用户问“我今天要带伞吗?
2025-09-18 16:10:30
452
原创 一文解析Youtu-GraphRAG,降低成本提升准确率的GraphRAG实战教程
是一种垂直一体化的智能体范式,它通过图谱模式(graph schema)将整个框架紧密连接成一个复杂而精巧的整体。它支持在图谱模式上进行无缝的领域迁移,几乎无需干预,即可展现出新一代 GraphRAG 在真实场景下的卓越适应性。
2025-09-18 15:31:38
535
原创 告别长上下文崩溃!Meta REFRAG框架实现大模型16倍扩展
在 arXiv、PubMed 等长 scientific 文献摘要任务中,REFRAG 可通过高压缩率纳入全文档信息,生成摘要的完整性与准确性更优:相同延迟下(解码器生成 token 数量一致),Rouge-1 指标较 LLaMA 提升 15%-20%,尤其在医学、物理等需精准提炼核心结论的领域表现突出。
2025-09-18 15:06:47
793
原创 收藏学习!MoE混合专家架构解析,大模型高效计算的核心技术
文章介绍了MoE(混合专家)架构的核心原理,它通过"专家分工"和"门控调度"实现高效的大模型计算。MoE架构包含多个小型专家网络和一个门控网络,门控网络根据输入动态选择最相关的专家并加权组合输出。这种架构实现了大模型的参数量与计算效率的平衡,具有参数量大但计算量小、模型容量高和专业化等优势,是构建如GPT-4等超大规模语言模型的重要技术。DeepSeek大模型大家都用过,它的出众有一个很重要因素,那就是它是MoE架构的大模型。
2025-09-17 16:45:55
687
原创 AI大模型技术全栈学习指南,程序员破局AI风口!
OpenAI发布GPT-5引发AI行业新热潮,大模型人才争夺战开启,超千家企业提供高薪AI岗位。只会写CRUD的程序员将面临淘汰,急需掌握Agent智能体、RAG、模型微调等大模型技术。未来大模型全栈工程师、AI应用开发工程师将拥有广阔发展空间和高薪前景。大模型测评网站Artificial Analysis数据显示,目前GPT-5已经超过Grok4排在第一!在开源模型榜中,目前排名前十的有六个是国产大模型!如今GPT、DeepSeek持续火爆,很多公司一口气推出十多个AI产品,抓紧布局AI。
2025-09-17 15:49:58
368
原创 程序员必看 | AI大模型对就业的影响,我们该如何抓住机遇?建议收藏!
技术革命本质是生产力的解放而非岗位消灭。历史数据显示,每次技术突破创造的岗位数量是替代岗位的2.3倍。面对AI浪潮,从业者应建立持续进化意识,将AI工具转化为能力放大器,在技术变革中把握跃迁机遇。核心竞争力的构建永远是人类在智能时代的立身之本。
2025-09-17 14:54:30
548
原创 大语言模型应用 | 强化学习核心技术从入门到实战!
技术要点回顾RLHF是目前最成熟的大模型对齐技术,但成本较高RLAIF提供了可扩展的替代方案,适合企业级应用DPO简化了训练流程,但对数据质量要求极高多目标平衡和奖励黑客问题是实际应用中的主要挑战实践建议团队规模推荐方案预期效果资源需求初创团队DPO或简化版RLHF中等效果,快速迭代低-中中型企业标准RLHF流程良好效果,可控成本中等大型企业多轮RLHF+RLAIF混合最佳效果,全面能力高未来展望。
2025-09-16 15:54:05
821
原创 【Agent工具调用】一文详解三大主流Agent工具调用机制和三大核心工具
文章介绍了Agent工具调用作为AI从对话助手进化为智能执行者的关键转折点,详细解析了三大主流Agent(AutoGPT、CrewAI、Cursor)的工具调用机制和三大核心工具(Browser Use、Computer Use、File Processing)的实际应用。这些工具使AI能够自主决策、协作执行和深度理解,从而实现复杂任务的自动化处理,重塑了人机协作的边界,成为AI时代提升生产力的关键技术。Agent工具调用是AI从"对话助手"进化为"智能执行者"的关键转折点。现代Agent基于→→→。
2025-09-16 15:06:24
993
原创 2025年转行大模型 | AI大模型时代,我们该如何抓住的机遇?
当前,我们正处于一个飞速发展的科技时代,特别是人工智能技术的迅猛进步已经开始深刻影响我们的生活、工作和社会形式。美国《福布斯》杂志日前刊登题为《人人都必须为2025年的十大人工智能趋势做好准备》的文章,深入剖析了2025年人工智能发展趋势,预示着大模型技术将成为未来科技竞争的核心领域。值得注意的是,中美AI模型差距正在缩小。
2025-09-16 14:57:29
786
原创 深入解析AI Agent:构建AI Agent系统的难点、框架选型与6种架构设计模式
文章全面解析了AI Agent系统,包括其基本概念(大语言模型与工具的循环系统)、构建难点(确保LLM有合适上下文)、框架选型维度(工作流与代理、可预测性、门槛上限等)以及6种架构设计模式(路由分发、代理、微调缓存、目标导向、智能体组合和双重安全)。文章强调,构建可靠AI Agent的关键是控制LLM的上下文,并推荐使用LangGraph等框架同时支持工作流和AI Agent,以实现最佳可靠性和灵活性。
2025-09-15 15:38:52
958
原创 深入解析AI Agent的底层架构,Agent的五大核心模块
本文深入解析AI Agent的底层架构,指出真正的Agent是具备状态感知、任务分解等能力的复杂系统,而非简单的大模型封装。文章拆解了构建Agent所需的五大核心模块(LLM、Memory、Planning、Tool-use、Reflection),对比了MCP、ReAct、A2A三种主流架构,并剖析了状态管理、工具调用鲁棒性等四大工程挑战。强调AI Agent的核心竞争力在于系统架构设计能力,为开发者提供了从概念到实践的全面指南。
2025-09-15 15:20:00
792
原创 大模型面试题详解 | AI大模型核心技术(采样器、训练参数、LoRA原理)
使用 SFT: 当你有充足的计算资源和较大的数据集时,SFT 是更好的选择,因为它可以充分利用整个模型的能力进行任务特定微调。使用 LoRA: 当计算资源有限、需要快速微调或部署、或在处理非常大的模型(如 GPT-3、GPT-4)时,LoRA 提供了一个高效且存储友好的替代方案。总的来说,LoRA 和 SFT 各有优劣,选择哪种方法应根据具体的任务需求、可用资源和模型架构来决定。
2025-09-15 14:55:31
790
原创 从零开始掌握LLM开发核,从预训练到部署的完整技术流程
预训练是在大规模无标签语料上训练模型,使其学习通用语言表示的过程。其目标是获取一个具有强大语言建模能力的基础模型。量化是指将模型权重和激活从高精度(FP32)压缩为低精度(INT8、FP8、W4A16),以降低模型体积和计算成本。微调是在预训练模型基础上,利用特定领域或任务的数据训练模型,使其适应下游任务。•预训练:奠定模型的通用能力•量化:提升推理效率、降低成本•微调:适配下游任务•对齐与优化:确保安全性与高效部署。
2025-09-14 19:30:00
545
原创 大模型面试题解析 | 深度学习核心概念详解(激活函数、Dropout、交叉熵和自注意力机制)干货收藏!
文章介绍了深度学习的四个核心概念:激活函数为神经网络引入非线性并稳定训练;Dropout通过随机丢弃神经元提高模型泛化能力;交叉熵用于衡量预测分布与真实分布的差距,分为多分类和二分类形式;自注意力机制中除以dk是为了防止softmax函数进入饱和区,保持梯度有效流动。这些概念是理解和构建深度学习模型的基础。
2025-09-13 17:03:29
860
原创 一文深度解析Transformer架构的原理与应用
本文详细介绍了Transformer架构的原理、组成部分及其在NLP、图像识别和强化学习等领域的应用。Transformer基于自注意力机制,由编码器和解码器组成,具有并行计算能力强、长距离依赖处理好的优势,已成为现代大语言模型和跨模态模型的核心基础。文章通过案例对比了Transformer与传统方法(RNN/CNN)的差异,并展示了其在多智能体路径规划等复杂任务中的应用价值。
2025-09-13 16:20:42
784
原创 一文解析7大主流AI Agent开发框架,从入门到精通,助你轻松掌握大模型应用开发
本文盘点了七款主流AI Agent开发框架:LangGraph、AutoGen、CrewAI、OpenAI Agents SDK、Google ADK、MetaGPT和PydanticAI。各框架特点鲜明:LangGraph专注于有状态工作流,AutoGen支持多智能体协作,CrewAI强调高性能与灵活性,OpenAI Agents SDK提供极简核心原语,Google ADK具备模块化设计,MetaGPT模拟软件公司角色分工,PydanticAI注重类型安全。
2025-09-13 16:03:30
760
原创 一文解析MoE(混合专家)构建万亿参数大模型的高效之道
MoE(混合专家)是一种稀疏激活架构,通过门控网络动态选择部分专家子网络处理输入,实现"参数超大但推理成本不变"。这种架构能大幅降低计算量,同时保持或提升模型性能,特别适合构建万亿参数级大模型。虽然面临负载不均衡、训练不稳定等挑战,但MoE已成为大模型发展的重要方向,在Switch Transformer、Mixtral等模型中得到成功应用。随着大语言模型(LLM)参数规模从十亿级增长到千亿、万亿级,如何在保持性能的同时节省算力,成为研究的核心问题。
2025-09-13 11:08:52
555
原创 40亿参数如何击败百亿模型?阿里巴巴Qwen3-4B技术深度剖析
阿里巴巴推出的Qwen3-4B模型以40亿参数实现媲美百亿级模型的能力,采用"思维模式"设计并分为"Thinking"和"Instruct"两个专精版本。2507版本支持256K超长上下文,极大拓展端侧AI应用边界。尽管存在"刷榜"争议,但实际应用表现获得广泛认可。Qwen3-4B的成功标志着小模型从"玩具"进化为解决专业问题的"尖刀",预示AI模型将更加场景化、专精化。在本地大模型的世界里,参数量几乎是能力最直接的体现。但最近,一款仅有。
2025-09-12 14:59:38
633
原创 收藏!8大开源AI Agent框架详解,助力小白快速上手大模型开发
本文精选8个功能强大的开源AI Agent框架,包括Autogen、crewAI、agno、eliza、mastra等,涵盖Python和TypeScript语言。这些框架提供了从多智能体协作到工作流管理的各种功能,大大降低了AI Agent开发门槛。无论你是想快速构建原型还是开发商业级应用,这些工具都能帮助你轻松构建智能系统,实现复杂任务分解、工具调用和多Agent协作。构建一个强大的 Agent 并非易事,它需要处理复杂的任务分解、工具调用、多 Agent 协作和长期记忆。
2025-09-12 14:39:03
656
原创 2025最新大模型系统学习指南,从入门到精通(非常详细)看这一篇就够了!
入门阶段(0-6个月)目标:掌握Python编程与数学基础,理解机器学习核心概念。行动计划完成Python基础课程,掌握NumPy/Pandas/Matplotlib。学习线性代数、概率论,结合Scikit-learn实现KNN、线性回归。参与Kaggle入门竞赛,提交第一个模型(如Titanic生存预测)。
2025-09-12 14:22:42
498
原创 大模型提示工程与智能体完全指南,从入门到精通,建议收藏!
这是一种针对大语言模型(LLM)应用,通过测试、评估、分析以及优化提示词和工具,系统性改进提示词的实践。是用自然语言进行编程!提示工程往往也是概念工程——确定模型预期行为,界定任务中“表现良好”的含义,传递清晰概念。清晰、明确、精准的文字表达以科学思维创建评估体系,持续开展测试产品思维——你的产品理想的模型行为是怎样的?了解大语言模型,知晓其特点与局限汇总并分析失效模式,思考修复办法考量边缘案例,想办法让提示词能应对各类广泛输入为什么需要智能体?何时应使用智能体?
2025-09-11 18:29:17
1022
原创 大模型RAG系统实战:ApeRAG多模态检索+五种索引类型+MCP协议完整指南
ApeRAG集多模式混合检索、智能代理、图RAG优化等多种核心能力,为开发者和企业提供了一个强大而高效且生产级可用的RAG应用方案。如果有想构建一个RAG应用系统的同学,不妨了解一下这个项目,或许可以从中获取一些灵感,帮助你的RAG系统能够更好的在生产环境应用并落地。
2025-09-11 18:14:56
921
原创 一文详解GraphRAG图谱增强,从社区检测到文本嵌入的完整指南
本文详细介绍了GraphRAG索引构建的第三阶段——图谱增强过程,包含四个核心工作流:使用Leiden算法进行层次化社区检测、将文本单元与实体和关系关联、为每个社区生成摘要报告、将各层次文本信息向量化存储。重点讲解了Leiden算法如何构建层次化社区结构,以及如何从底层社区开始逐层生成社区报告,最后将多种文本信息转化为向量嵌入,为后续查询提供支持。其中,创建最终文本单元按理应该放在第二阶段的末尾,当图谱提取结束后就可以创建了,它的作用是将文本单元与提取出来的实体、关系和协变量进行关联并重新保存。
2025-09-11 17:48:21
620
原创 程序员入门指南:独立Embedding模型与大模型Embedding层的本质区别与应用场景
独立Embedding模型(如Word2Vec)是静态、上下文无关的语义表示工具,输出固定词向量,适用于简单语义匹配;而大模型中的Embedding层是动态语义加工起点,与Transformer协同实现上下文感知的深层语义建模。前者采用"单任务单练"模式,后者采用"端到端团战"模式。大模型可视为广义Embedding模型,其语义生成呈现层级递进特征,从初始编码到终极语义层,最终形成包含"文本语义+未来可能性"的动态Embedding,适用于复杂NLP场景。
2025-09-10 20:15:57
801
原创 让大模型读懂企业数据:高级RAG框架突破与创新(附完整代码)
代优化。4.智能查询代理:采用 ReAct 等基于代理的方法,增强查询意图理解能力,动态调整检索策略,提升模糊查询处理精度。5.多模态扩展:支持扫描文档、图像、图表等多模态数据检索与生成,进一步拓宽企业知识处理的覆盖范围。该研究提出的先进 RAG 框架,通过结构化数据处理、混合检索、动态优化等创新,有效突破了传统 RAG 在企业异构数据场景下的局限。
2025-09-10 19:58:04
616
原创 一文掌握大模型核心技术,从Transformer到提示工程
文章详细介绍了Transformer架构及其在大语言模型中的演进,从BERT和GPT的不同训练方法,到模型泛化能力和提示工程的发展,最后介绍了InstructGPT和LaMDA等通过人类反馈优化的系统,展示了大模型技术从基础架构到理解人类指令的完整发展路径。像 ChatGPT、Bard 这样的 AI 对话代理,最近人气飙升。它们与许多语言模型一道,在新兴的技术前沿展开激烈竞争。这些工具正通过浏览器和通信平台进入我们的日常生活。然而,行业不断演变,跟进并不容易。因此,决定使用或投资哪款产品,常常令人犹豫。
2025-09-10 19:46:14
812
原创 【保姆级教程】Qwen3+RAG实战,从零搭建智能问答系统,建议收藏(附代码)
通过结合使用通义千问3.0的指令、嵌入和重排器模型,我们构建了一个实用的RAG管道,充分利用了它们的优势。凭借256K的上下文长度和多语言支持,通义千问系列在实际任务中展现了其多功能性。作为下一步,您可以尝试增加传递给指令模型的文档数量,或者针对不同用例使用思维模型。模型的输出也很有前景。我建议您尝试使用**忠实度(Faithfulness)和答案相关性(Answer Relevancy)**等指标来评估RAG,以确保LLM在您的任务/用例中大部分没有出现幻觉。
2025-09-10 14:25:46
685
原创 大模型实战 | Dify+Chrome MCP打造网页自动化AI助手
Chrome MCP(Model Context Protocol)是基于Google Chrome浏览器的网页自动化工具MCP实现版本。通过Chrome DevTools Protocol提供精细的浏览器控制能力。•数据安全:所有操作在本地执行,敏感数据不上传•响应速度快:无网络延迟,操作更流畅•成本更低:无需购买云服务器•自由度高:可访问本地文件和内网资源核心功能• 网页截图和PDF生成• 表单自动填写• 页面元素点击和交互• 数据抓取和提取• 文件上传下载。
2025-09-10 13:53:19
596
原创 【干货收藏】基于LangGraph的多代理RAG系统,程序员必备技能
"""子图中“检索文档”节点的私有状态,仅存储当前查询"""query:str"""研究员子图的完整状态"""question:str# 主图传递的研究步骤(即当前需解决的子问题)queries:list[str]= field(default_factory=list)# 生成的多组查询documents: Annotated[list[Document], reduce_docs]= field(default_factory=list)# 检索并重排序后的文档。
2025-09-09 19:46:43
928
原创 Spring AI实现RAG增强生成:解决大模型幻觉,构建专业问答系统(附完整代码)
是一种将信息检索与文本生成相结合的技术。检索:从知识库中查找与问题相关的文档片段增强:将这些片段作为上下文提供给大模型生成:模型基于上下文生成更准确、更可靠的答案文档向量化:将 PDF/Word 文档转换为向量存储相似度检索:根据问题查找相关文档片段增强生成:将检索结果作为上下文生成准确答案最佳实践建议文档预处理:清理格式、分段优化提升检索效果阈值调优:根据场景调整相似度阈值(0.6-0.8)多文档支持:支持多种格式文档上传版本管理:实现文档版本更新和回滚。
2025-09-09 17:53:11
630
原创 大模型Agent技术解析,深入理解Agent的四个能力层级
如果你只能说出"Agent就是智能体",那还停留在概念背诵阶段。真正的理解是能解释清楚为什么单纯的"输入→思考→输出"模式不够,而需要"感知→规划→行动→学习"的闭环架构。
2025-09-09 14:17:24
604
原创 提示词工程实战:系统提示词设计与AI智能体开发指南
文章聚焦于智能体系统提示词的写作方法,详细介绍了链式提示、链式思考等通用提示词技术,以及系统提示词的六大结构要素:身份、目标、信息、要求、样本和强调信息。通过具体示例展示了如何构建能解决特定问题的AI智能体,强调了提示词工程需要通过不断测试和优化来提升效果。这些方法能帮助开发者创建更专业、高效的大模型应用,提升AI解决特定任务的能力。在面对简单任务时,我们可以通过多轮迭代让模型理解我们的需求。但很多时候,我们会希望模型以特定的方法处理某些长期的特定的需求。
2025-09-08 22:26:27
583
原创 从零开始学大模型:12张动图详解应用架构核心技术( MCP、RAG、Agent、GraphRAG....)建议收藏!
本文通过12张动图全面解析AI大模型应用核心技术,涵盖MCP、RAG、Agent、Cache、Fine-tuning、Prompt、GraphRAG等。内容包括LLM训练四阶段、推理提示词技巧、监督与强化微调、智能体设计模式、各种RAG实现方式及KV缓存技术等,是构建AI大模型应用架构的基础知识,适合程序员和学习者。
2025-09-05 14:37:07
469
原创 FrOG开源 | GraphRAG框架,提升大模型透明度与准确性的完整方案
本文介绍了“FrOG: Framework of Open GraphRAG”研究的核心内容,包括其针对大模型知识更新难、答案透明度差、幻觉等问题的解决思路与系统架构。系统在Wikidata、DBpedia和本地KG等多知识库上验证了效果,并对问答管线、组件、实验结果及提升建议进行了全面阐述。适合专业知识图谱与LLM领域人士参考。
2025-09-05 13:58:32
797
原创 一文详解传统智能体、大语言模型智能体、多智能体协作
想象你要设计一个工厂的自动化控制系统。感知模块:各种传感器监测温度、压力、流量决策模块:基于预设规则或机器学习模型做判断执行模块:控制阀门、电机、报警器等设备学习模块:通过历史数据优化控制策略专门化、模块化、领域特定。传统智能体架构├── 感知模块(专门的传感器处理)├── 决策模块(规则引擎或特定算法)├── 执行模块(专门的执行器)└── 学习模块(强化学习、监督学习等)现在想象另一个场景。理解你的自然语言描述:无论你说"帮我分析这份销售数据"还是"写一封客户回复邮件"
2025-09-05 13:36:05
579
原创 从零构建Multi-Agent系统:LangGraph框架实现自动化演练全攻略
从上述两个经典外部开源项目来看,PentestGPT提供了一种优秀的人机协同模式,通过全局树解决了大模型的长期记忆和上下文问题;而CAI则探索了一种全自动化、多Agent协作的架构,通过管理者-工作者模式实现了任务的有效分解和执行。两者各有所长,也各有局限。我们的内部建设,可以借鉴PentestGPT的全局状态管理能力,并融合CAI的分层协作架构,打造一个既能实现高自动化,又能保证全局可视、可控的下一代自动化演练平台。
2025-09-04 21:09:15
900
原创 大模型论文 | Think-on-Graph:大模型与知识图谱深度协同推理新范式,解决LLM幻觉问题
ToG通过“LLM ⊗ KG”范式实现了LLM与KG的深度协同,提升了LLM的深度推理能力、可解释性和知识更新效率。其免训练、低成本、高性能的特点,为解决LLM幻觉问题和知识密集型任务提供了新方案。
2025-09-04 20:58:00
589
原创 大模型论文 | 大模型推理能力提升,从CoT到GoT的演进与实战应用
从CoT到GoT的演进轨迹展现了AI推理范式的根本性变革:从单一路径的顺序推理转向多维度的并行思维模拟。这一进程标志着大语言模型研究重心从参数规模竞争转向认知机制建模。方法对比分析计算成本呈递增趋势:CoT < ToT < GoT。推理能力的复杂度和灵活性同样递增。实际应用需要在性能需求和资源约束间平衡。生产环境部署需权衡推理性能与资源消耗。CoT因其轻量特性适合大规模服务,ToT在质量要求较高的场景中性价比突出,GoT则主要应用于研究原型和专业领域。
2025-09-04 20:39:32
932
原创 RAG技术全解析:大模型应用开发的核心技术栈,小白到专家的完整指南
RAG,全称为Retrieval-Augmented Generation(检索增强生成),是一种结合了 “信息检索” 与 “生成式 AI” 的混合 AI 技术。它的核心目标是解决传统大语言模型(LLM,如 GPT、LLaMA 等)的两大关键局限 ——知识时效性不足和事实准确性偏差(幻觉),通过 “先检索外部权威信息,再基于检索结果生成回答” 的逻辑,让 AI 输出更精准、更具时效性和可信度的内容。
2025-09-03 18:04:39
1104
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人