大模型的训练与应用 | 二十二、DeepSeek API 申请与使用指南

DeepSeek API,一个兼容OpenAI API格式的强大工具,为开发者提供了丰富的自然语言处理能力。本文将为您展示如何申请和使用DeepSeek API,让您能够轻松集成智能对话补全功能。

一、DeepSeek API概览

DeepSeek API基于先进的MoE模型,支持对话生成和补全,适用于聊天机器人、虚拟助手等应用场景。

二、申请API Key

1)注册DeepSeek平台账号

访问DeepSeek平台,注册并登录您的账号。

2)创建API Key

在用户中心或API管理页面,创建一个新的API Key。请妥善保管您的API Key,避免泄露。

三、环境准备

1)安装Python环境

确保您的开发环境中已安装Python 3.8或以上版本。

2)安装OpenAI SDK

通过以下命令安装OpenAI的Python SDK:

pip3 install openai

四、编写客户端程序

  • 使用OpenAI SDK,您可以编写客户端程序来调用DeepSeek API。以下是一个使用Python的示例代码:

    from openai import OpenAI
    
    # 请将 "<deepseek api key>" 替换为您的DeepSeek API Key
    client = OpenAI(api_key="<deepseek api key>", base_url="https://api.deepseek.com")
    response = client.chat.completions.create(
        model="deepseek-chat",
        messages=[
            {"role": "system", "content": "You are a helpful assistant"},
            {"role": "user", "content": "Hello"},
        ],
        stream=False  # 非流式输出,如果需要流式输出,设置为True
    )
    print(response.choices[0].message.content)
    
  • 您也可以使用cURL命令行工具来发送请求,示例如下:

    curl https://api.deepseek.com/chat/completions \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer $DEEPSEEK_API_KEY" \
    -d '{
        "model": "deepseek-chat",
        "messages": [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": "Hello!"}
        ],
        "stream": false
    }'
    ```[^43^]
    

五、请求和响应处理

1)解析响应

API响应将返回JSON格式的数据,您可以根据需要解析并使用这些数据。

2)错误处理

如果遇到错误(如429或503),请根据错误信息进行相应处理,如稍后重试。

六、流式输出

DeepSeek API支持流式输出,您可以设置stream=True来实时获取模型生成的文本。

七、多轮对话实现

通过维护对话上下文,您可以使用DeepSeek API实现多轮对话功能。

八、注意事项

  • 请遵守DeepSeek API的使用条款和限制。
  • 注意API Key的安全,避免在公共代码库中泄露。
  • 监控API使用情况,确保不超过速率限制。

通过上述步骤,您已经了解了如何申请和使用DeepSeek API。


最后

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频,免费分享!

在这里插入图片描述

一、大模型全套的学习路线

L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署

在这里插入图片描述

达到L4级别也就意味着你具备了在大多数技术岗位上胜任的能力,想要达到顶尖水平,可能还需要更多的专业技能和实战经验。

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

三、大模型经典PDF书籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

四、AI大模型商业化落地方案

在这里插入图片描述

作为普通人在大模型时代,需要不断提升自己的技术和认知水平,同时还需要具备责任感和伦理意识,为人工智能的健康发展贡献力量。

有需要全套的AI大模型学习资源的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

### DeepSeek API 使用教程 对于希望了解如何使用 DeepSeek API 的开发者来说,官方提供了详尽的入门资料。通过访问官方文档[^1],可以查看最新的接口说明和更新日志,这有助于理解各个功能的具体实现方式。 #### 初始化环境设置 为了能够顺利调用 DeepSeek 提供的服务,在开始之前需要完成必要的准备工作: - **下载模型文件**:可以从 Hugging Face 或其他指定位置获取所需的预训练模型。 - **安装依赖库**:确保已安装合适的深度学习框架,比如 PyTorch,以便加载并运行这些模型。 ```python import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("deepseek/model-path") model = AutoModel.from_pretrained("deepseek/model-path") text_input = "你好,DeepSeek!" inputs = tokenizer(text_input, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0])) ``` 这段代码展示了如何利用 `transformers` 库中的工具来初始化一个基于特定路径下的预训练模型实例,并对其进行简单的文本处理操作。 #### 接口请求示例 根据提供的信息,如果想要构建一个多轮次交互的应用程序,则可以通过设定不同的角色参数来进行模拟对话流程。例如,在发送下一个查询前将当前回复设为背景信息的一部分,此时应设置 `role=assistant` 参数以指示这是来自助手端的消息[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值