正交矩阵
实矩阵A满足:
A A T = E {AA\mathop{ {} } \nolimits^{ {T} } =E} AAT=E
则A为正交矩阵其中E为单位矩阵。正交矩阵是标准正交基按列排列起来得到的矩阵。
正交矩阵是酉矩阵的在实数域的一种特殊形式。
特征向量&特征值
设A是n阶方阵,如果存在数λ和非零向量ε,使得:
A ε = λ ε {A \varepsilon = \lambda \varepsilon } Aε=λε
则称λ为方阵A的特征值,ε称为方阵A的特征向量。
相似矩阵
设A,B都是n阶矩阵,如果存在可逆矩阵P,使得:
P − 1 A P = B {P\mathop{ {} } \nolimits^{ {-1} } AP=B} P−1AP=B
则称A与B相似。
相似矩阵有相同的特征多项式,也就是说A与B有相同的特征值和相同的行列式(det),这是相似矩阵的一个重要性质。下面给出证明:
矩阵对角化
对于一个矩阵来讲,对角矩阵在各种计算上比较简单,比如二次型中的标准型就可以用对角矩阵表示。所以如果能将矩阵对角化,就可以方便计算。
n阶方阵A可对角化的充要条件是它有n个线性无关的特征向量。则有: