线性代数常用知识点总结

本文总结了线性代数的重要概念,包括正交矩阵、特征向量与特征值、相似矩阵、矩阵对角化、奇异值分解(SVD)及其在主成分分析(PCA)中的应用,还有LU分解、二次型以及矩阵的四个基本子空间等。详细阐述了这些概念的定义、性质及应用场景,为理解和运用线性代数提供基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正交矩阵

实矩阵A满足:
A A T = E {AA\mathop{ {} } \nolimits^{ {T} } =E} AAT=E
A为正交矩阵其中E为单位矩阵。正交矩阵是标准正交基按列排列起来得到的矩阵。

正交矩阵是酉矩阵的在实数域的一种特殊形式。

特征向量&特征值

A是n阶方阵,如果存在数λ和非零向量ε,使得:
A ε = λ ε {A \varepsilon = \lambda \varepsilon } Aε=λε
则称λ为方阵A特征值,ε称为方阵A的特征向量

相似矩阵

AB都是n阶矩阵,如果存在可逆矩阵P,使得:
P − 1 A P = B {P\mathop{ {} } \nolimits^{ {-1} } AP=B} P1AP=B
则称AB相似。

相似矩阵有相同的特征多项式,也就是说AB有相同的特征值和相同的行列式(det),这是相似矩阵的一个重要性质。下面给出证明:
在这里插入图片描述

矩阵对角化

对于一个矩阵来讲,对角矩阵在各种计算上比较简单,比如二次型中的标准型就可以用对角矩阵表示。所以如果能将矩阵对角化,就可以方便计算。

n阶方阵A可对角化的充要条件是它有n个线性无关的特征向量。则有:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值