卷积LSTM网络应用于时空序列预测

时空序列预测问题是输入的是按照某一时刻之前若干个时刻表示空间信息的二维矩阵,预测某一时刻后面若干个时刻的空间状态。可以形式化为:

在这里插入图片描述

卷积LSTM(Convolutional LSTM)是把卷积神经网络的思想和循环神经网络的思想融合到一个端到端的深度神经网络之中,使得网络既有提取时间信息的能力,又有提取空间信息的能力。ConvLSTM这种网络结构在视频帧预测,未来天气预测等时空序列预测问题中有很好的表现。下面介绍四篇关于卷积LSTM网络的论文。

Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting

这篇论文首次提出了ConvLSTM的网络结构,在普通的FC-LSTM上加入了卷积层,使得网络在能够很好的提取时间信息的基础上,具有了提取空间信息的能力。可以成功的应用于视频帧预测和降水预测。

我们可以把FC-LSTM和ConvLSTM进行对比:
在这里插入图片描述

可以看到,ConvLSTM将FC-LSTM的矩阵乘操作变为了卷积操作,这样就不用将X展开成一维输入网络了,可以更好的保存空间信息。

网络的整体结构如下图所示:

  • 1
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
CNN-BiLSTM是一种常用于时间序列预测的深度学习模型。该模型将CNN和双向LSTM结合起来,通过卷积神经网络(CNN)提取时间序列数据的空间特征,并通过双向长短时记忆网络(LSTM)进行时间建模,从而实现更准确的时间序列预测。 首先,CNN部分通过滑动窗口的方式对时间序列进行卷积操作,提取不同时间段的特征。这样做的好处是,不同时间段的特征对预测结果的贡献可能不同,通过CNN可以更好地捕捉到这些关键特征。 接下来,BiLSTM部分在CNN提取的特征基础上,将时间序列数据按照时间顺序和逆序分别输入两个独立的LSTM网络中,分别学习正向和反向的时间依赖关系。BiLSTM能够更好地捕捉到长期的时间依赖关系,并具有记忆和遗忘机制,可以更好地捕捉序列中的有用信息。 最后,通过串联CNN和BiLSTM,可以将前面提取的时空特征和时间依赖关系结合起来,得到更准确的时间序列预测结果。通过反向传播算法对模型进行训练,优化模型参数,使预测结果与真实值之间的误差最小化。 需要注意的是,选择合适的模型架构和参数设置对于时间序列预测的准确性至关重要。此外,数据预处理、特征工程等前期工作也对模型的性能有一定影响。因此,在应用CNN-BiLSTM进行时间序列预测时,需要综合考虑这些因素并进行适当调整,才能取得较好的预测效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值