目的:用空气质量、meteorology (气象学)、spatial topology (空间拓扑)、天气预报、站点信息、时间信息来预测空气质量。
难点:影响因素多,参量之间的影响是非线性的且具有时空特性,突变的噪声性质,有未知参量的影响。
解决方案:建立了LightGBM、spatial-temporal gated DNN、Seq2Seq model三个模型,分别用现有数据集训练;再训练一个线性模型将上述三个模型的结果合并起来作为预测的输出。
另外说一下,集成学习(ensemble learning)的方法经常用于各种竞赛中,可以说是刷榜必备。
related work
related work介绍了气象学模型,静态学习模型,深度学习模型(基于时间序列)来解决空气质量预测的问题。提出完成此任务要提出融合多种时空信息的策略,这是解决问题的关键。
提出的方法
总体模型架构如下图:
-
LightGBM:特征选择器,比较稳定
-
spatial-temporal gated DNN:有处理时空响应的能力
-
Seq2Seq model:编码输入,解码输出
LightGBM
Li