19KDD AccuAir Winning Solution to Air Quality Prediction for KDD Cup 2018

该博客详细介绍了KDD Cup 2018空气质量预测比赛的冠军解决方案,利用LightGBM、Spatial-temporal Gated DNN和Seq2Seq模型进行集成学习,结合气象学、空间拓扑、时间和站点信息进行预测。通过特征选择、时空信息处理和序列到序列模型,有效应对复杂非线性和时空特性,提升了预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目的:用空气质量、meteorology (气象学)、spatial topology (空间拓扑)、天气预报、站点信息、时间信息来预测空气质量。

难点:影响因素多,参量之间的影响是非线性的且具有时空特性,突变的噪声性质,有未知参量的影响。

解决方案:建立了LightGBM、spatial-temporal gated DNN、Seq2Seq model三个模型,分别用现有数据集训练;再训练一个线性模型将上述三个模型的结果合并起来作为预测的输出。

另外说一下,集成学习(ensemble learning)的方法经常用于各种竞赛中,可以说是刷榜必备。

related work

related work介绍了气象学模型,静态学习模型,深度学习模型(基于时间序列)来解决空气质量预测的问题。提出完成此任务要提出融合多种时空信息的策略,这是解决问题的关键。

提出的方法

总体模型架构如下图:
在这里插入图片描述

  • LightGBM:特征选择器,比较稳定

  • spatial-temporal gated DNN:有处理时空响应的能力

  • Seq2Seq model:编码输入,解码输出

LightGBM

Li

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值