Vijos 1067Warcraft III 守望者的烦恼(动态规划+矩阵快速幂)

背景

守望者warden,长期在暗夜精灵的的首都艾萨琳内担任视察监狱的任务,监狱是成长条行的,守望者warden拥有一个技能名叫“闪烁”,这个技能可以把她传送到后面的监狱内查看,她比较懒,一般不查看完所有的监狱,只是从入口进入,然后再从出口出来就算完成任务了。

描述

头脑并不发达的warden最近在思考一个问题,她的闪烁技能是可以升级的,k级的闪烁技能最多可以向前移动k个监狱,一共有n个监狱要视察,她从入口进去,一路上有n个监狱,而且不会往回走,当然她并不用每个监狱都视察,但是她最后一定要到第n个监狱里去,因为监狱的出口在那里,但是她并不一定要到第1个监狱。

守望者warden现在想知道,她在拥有k级闪烁技能时视察n个监狱一共有多少种方案?

格式

输入格式

第一行是闪烁技能的等级k(1<=k<=10)
第二行是监狱的个数n(1<=n<=2^31-1)

输出格式

由于方案个数会很多,所以输出它 mod 7777777后的结果就行了

样例1

样例输入1

2
4

样例输出1

5

限制

各个测试点1s

提示

把监狱编号1 2 3 4,闪烁技能为2级,
一共有5种方案
→1→2→3→4
→2→3→4
→2→4
→1→3→4
→1→2→4

小提示:建议用int64,否则可能会溢出

解题思路

分析题目可知,拥有k级闪烁技能时视察n个监狱的方案种数可以由下面递推式得出:
f ( n ) = f ( n − 1 ) + . . . + f ( n − k ) {f{ \left( {n} \right) } =f{ \left( {n-1} \right) } +...+f{ \left( {n-k} \right) } } f(n)=f(n1)+...+f(nk)
由于n的范围过大,我们可以用矩阵的快速幂方法求得。由递推式可以构造下面的等式:
在这里插入图片描述

得到上面的等式就可以很容易的看出解题思路了:我们先初始化f(0)到f(k-1)的值,再计算左边方阵的n次方,再相乘。结果的第一个值即为所求。

AC代码

#include <bits/stdc++.h>
#define FOR(I,A,B) for(int I = (A); I < (B); I++)
#define FORE(I,A,B) for(int I = (A); I <= (B); I++)
#define PRII pair<int,int> 
#define INF 0x3f3f3f3f
#define MOD 7777777 
using namespace std;
long long n,k;
long long c[12];
struct M{
	long long m[12][12];
}ori;
void print(M t){
	FOR(i,0,k){
		FOR(j,0,k){
			printf("%lld ",t.m[i][j]);
		}printf("\n");
	}
}
M mul(M a,M b){
	M res;
	FOR(i,0,k){
		FOR(j,0,k){
			long long tmp=0;
			FOR(l,0,k) tmp+=a.m[i][l]*b.m[l][j];
			tmp=tmp%MOD;
			res.m[i][j]=tmp;
		}
	}
	return res;
}
M dg(M t,long long num){
	M res;
	if(num==1){
		res=t;
	}else if(num==2){
		res=mul(t,t);
	}else if(num%2){
		M tmp=dg(t,num/2);
		M tmp2=mul(tmp,ori);
		res=mul(tmp,tmp2);
	}else{
		M tmp=dg(t,num/2);
		res=mul(tmp,tmp);
	}
	return res;
}

int main()
{
	cin>>k>>n;
	FOR(i,0,k-1) ori.m[i][i+1]=1;
	FOR(i,0,k) ori.m[k-1][i]=1;
	long long tt=1;
	c[0]=1;
	FOR(i,1,k){
		c[i]=tt;
		tt+=c[i];
	}
	M rr=dg(ori,n); 
	long long res=0;
	FOR(i,0,k) res+=rr.m[0][i]*c[i];
	cout<<res%MOD<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值