[每日一题]101:正则表达式匹配(动归、递归)

76 篇文章 1 订阅
45 篇文章 2 订阅


题目描述

给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。

  • ‘.’ 匹配任意单个字符
  • ‘*’ 匹配零个或多个前面的那一个元素

所谓匹配,是要涵盖整个字符串 s的,而不是部分字符串。

说明:

  • s 可能为空,且只包含从 a-z 的小写字母。
  • p 可能为空,且只包含从 a-z 的小写字母,以及字符 . 和 *。

示例 1:

输入:
s = "aa"
p = "a"
输出: false
解释: "a" 无法匹配 "aa" 整个字符串。

示例 2:

输入:
s = "aa"
p = "a*"
输出: true
解释: 因为 '*' 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 'a'。因此,字符串 "aa" 可被视为 'a' 重复了一次。

示例 3:

输入:
s = "ab"
p = ".*"
输出: true
解释: ".*" 表示可匹配零个或多个('*')任意字符('.')。

示例 4:

输入:
s = "aab"
p = "c*a*b"
输出: true
解释: 因为 '*' 表示零个或多个,这里 'c'0, 'a' 被重复一次。因此可以匹配字符串 "aab"

示例 5:

输入:
s = "mississippi"
p = "mis*is*p*."
输出: false

解答思路:

方法一:动态规划

  • 状态定义: 设动态规划矩阵 dp , dp[i][j] 代表字符串 s 的前 i 个字符和 p 的前 j 个字符能否匹配。

  • 转移方程: 需要注意,由于 dp[0][0] 代表的是空字符的状态, 因此 dp[i][j] 对应的添加字符是 s[i - 1] 和 p[j - 1] 。

    p[j - 1] = '*' 时, dp[i][j] 在当以下任一情况为 true 时等于 true :

    1. dp[i][j - 2]: 即将字符组合 p[j - 2] * 看作出现 0 次时,能否匹配;
    2. dp[i - 1][j]: 即让字符 dp[i - 1][j] 多出现一次时,能否匹配;

    p[j - 1] != '*' 时, dp[i][j] 在当以下任一情况为 true 时等于 true :

    1. dp[i - 1][j - 1] 且 s[i - 1] = p[j - 1]: 即让字符 dp[i - 1][j] 多出现一次时,能否匹配;
    2. dp[i - 1][j - 1] 且 p[j - 1] = '.': 即将字符 . 看作字符 s[i - 1] 时,能否匹配;
  • 初始化: 需要先初始化 dp 矩阵首行,以避免状态转移时索引越界。

    1. dp[0][0] = true: 代表两个空字符串能够匹配。
  • 返回值: dp 矩阵右下角字符,代表字符串 s 和 p 能否匹配。

复杂度分析:

  • 时间复杂度 O(MN) : 其中 M,N 分别为 s 和 p 的长度,状态转移需遍历整个 dp 矩阵。
  • 空间复杂度 O(MN) : 状态矩阵 dp 使用 O(MN) 的额外空间。

代码实现:

class Solution {
public:
    bool isMatch(string s1, string s2) {
        int n = s1.size(), m = s2.size();
        s1 = ' ' + s1, s2 = ' ' + s2;
        vector<vector<bool> > dp(n + 1, vector<bool>(m + 1, false));
        dp[0][0] = true;
        for (int i = 0; i <= n; ++i) {
            for (int j = 1; j <= m; ++j) {
                if (j + 1 <= m && s2[j + 1] == '*') continue;
                if (i && s2[j] != '*') 
                	dp[i][j] = dp[i - 1][j - 1] && (s1[i] == s2[j] || s2[j] == '.');
                else if (s2[j] == '*')
                    dp[i][j] = dp[i][j - 2] || i && dp[i - 1][j] && (s1[i] == s2[j - 1] || s2[j - 1] == '.');
            }
        }
        return dp[n][m];
    }
};

方法二:递归

代码实现:

bool isMatch(char* str, char* pattern){
    if(str == NULL || pattern == NULL) return false;
    // 可能存在 *str == '\0' && *pattern != '\0' 这种情况
    if(*str == '\0' && *pattern == '\0') return true;
    if(*str != '\0' && *pattern == '\0') return false;

    if(*(pattern+1) == '*'){
        if(*pattern == *str || (*pattern == '.' && *str != '\0')){
            return isMatch(str+1, pattern) || isMatch(str, pattern+2);
        }
        else
            return isMatch(str, pattern+2);
    }
    if(*str == *pattern || *pattern == '.' && *str != '\0')
        return isMatch(str+1, pattern+1);

    return false;
}

如有不同见解,欢迎留言讨论~~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值