题目描述
给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。
- ‘.’ 匹配任意单个字符
- ‘*’ 匹配零个或多个前面的那一个元素
所谓匹配,是要涵盖整个字符串 s的,而不是部分字符串。
说明:
- s 可能为空,且只包含从 a-z 的小写字母。
- p 可能为空,且只包含从 a-z 的小写字母,以及字符 . 和 *。
示例 1:
输入:
s = "aa"
p = "a"
输出: false
解释: "a" 无法匹配 "aa" 整个字符串。
示例 2:
输入:
s = "aa"
p = "a*"
输出: true
解释: 因为 '*' 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 'a'。因此,字符串 "aa" 可被视为 'a' 重复了一次。
示例 3:
输入:
s = "ab"
p = ".*"
输出: true
解释: ".*" 表示可匹配零个或多个('*')任意字符('.')。
示例 4:
输入:
s = "aab"
p = "c*a*b"
输出: true
解释: 因为 '*' 表示零个或多个,这里 'c' 为 0 个, 'a' 被重复一次。因此可以匹配字符串 "aab"。
示例 5:
输入:
s = "mississippi"
p = "mis*is*p*."
输出: false
解答思路:
方法一:动态规划
-
状态定义: 设动态规划矩阵 dp , dp[i][j] 代表字符串 s 的前 i 个字符和 p 的前 j 个字符能否匹配。
-
转移方程: 需要注意,由于 dp[0][0] 代表的是空字符的状态, 因此 dp[i][j] 对应的添加字符是 s[i - 1] 和 p[j - 1] 。
当
p[j - 1] = '*'
时, dp[i][j] 在当以下任一情况为 true 时等于 true :- dp[i][j - 2]: 即将字符组合
p[j - 2] *
看作出现 0 次时,能否匹配; - dp[i - 1][j]: 即让字符
dp[i - 1][j]
多出现一次时,能否匹配;
当
p[j - 1] != '*'
时, dp[i][j] 在当以下任一情况为 true 时等于 true :- dp[i - 1][j - 1] 且
s[i - 1] = p[j - 1]
: 即让字符 dp[i - 1][j] 多出现一次时,能否匹配; - dp[i - 1][j - 1] 且
p[j - 1] = '.'
: 即将字符 . 看作字符 s[i - 1] 时,能否匹配;
- dp[i][j - 2]: 即将字符组合
-
初始化: 需要先初始化 dp 矩阵首行,以避免状态转移时索引越界。
dp[0][0] = true
: 代表两个空字符串能够匹配。
-
返回值: dp 矩阵右下角字符,代表字符串 s 和 p 能否匹配。
复杂度分析:
- 时间复杂度 O(MN) : 其中 M,N 分别为 s 和 p 的长度,状态转移需遍历整个 dp 矩阵。
- 空间复杂度 O(MN) : 状态矩阵 dp 使用 O(MN) 的额外空间。
代码实现:
class Solution {
public:
bool isMatch(string s1, string s2) {
int n = s1.size(), m = s2.size();
s1 = ' ' + s1, s2 = ' ' + s2;
vector<vector<bool> > dp(n + 1, vector<bool>(m + 1, false));
dp[0][0] = true;
for (int i = 0; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (j + 1 <= m && s2[j + 1] == '*') continue;
if (i && s2[j] != '*')
dp[i][j] = dp[i - 1][j - 1] && (s1[i] == s2[j] || s2[j] == '.');
else if (s2[j] == '*')
dp[i][j] = dp[i][j - 2] || i && dp[i - 1][j] && (s1[i] == s2[j - 1] || s2[j - 1] == '.');
}
}
return dp[n][m];
}
};
方法二:递归
代码实现:
bool isMatch(char* str, char* pattern){
if(str == NULL || pattern == NULL) return false;
// 可能存在 *str == '\0' && *pattern != '\0' 这种情况
if(*str == '\0' && *pattern == '\0') return true;
if(*str != '\0' && *pattern == '\0') return false;
if(*(pattern+1) == '*'){
if(*pattern == *str || (*pattern == '.' && *str != '\0')){
return isMatch(str+1, pattern) || isMatch(str, pattern+2);
}
else
return isMatch(str, pattern+2);
}
if(*str == *pattern || *pattern == '.' && *str != '\0')
return isMatch(str+1, pattern+1);
return false;
}
如有不同见解,欢迎留言讨论~~~