题目描述
彼此痛恨的甲、乙、丙三个枪手准备决斗。甲枪法最好,十发八中;乙枪法次之,十发六中;丙枪法最差,十发四中。如果三人同时开枪,并且每人每轮只发一枪;那么枪战后,谁活下来的机会大一些?
正确思路
一般人认为甲的枪法好,活下来的可能性大一些。但合乎推理的结论是,枪法最糟糕的丙活下来的几率最大
那么我们先来分析一下各个枪手的策略。
- 如同田忌赛马一般,枪手甲一定要对枪手乙先开枪。因为乙对甲的威胁要比丙对甲的威胁更大,甲应该首先干掉乙,这是甲的最佳策略。
- 同样的道理,枪手乙的最佳策略是第一枪瞄准甲。乙一旦将甲干掉,乙和丙进行对决,乙胜算的概率自然大很多。
- 枪手丙的最佳策略也是先对甲开枪。乙的枪法毕竟比甲差一些,丙先把甲干掉再与乙进行对决,丙的存活概率还是要高一些。
我们根据分析来计算一下三个枪手在上述情况下的存活几率:
- 第一轮:甲射乙,乙射甲,丙射甲。
甲的活率为:24%(40% X 60%)
乙的活率为:20%(100% - 80%)
丙的活率为:100%(无人射丙)
- 由于丙100%存活率,因此根据上轮甲乙存活的情况来计算三人第二轮的存活几率:
情况1:甲活乙死(24% X 80% = 19.2%)
- 甲射丙,丙射甲
- 甲的活率为60%,丙的活率为20%。
情况2:乙活甲死(20% X 76% = 15.2%)
- 乙射丙,丙射乙
- 乙的活率为60%,丙的活率为40%。
情况3:甲乙同活(24% X 20% = 4.8%)
- 重复第一轮。
情况4:甲乙同死(76% X 80% = 60.8%)
- 枪战结束。
据此来计算三人活率:
甲的活率为(19.2% X 60%) + (4.8% X 24%) = 12.672%
乙的活率为(15.2% X 60%) + (4.8% X 20%) = 10.08%
丙的活率为(19.2% X 20%) + (15.2% X 40%) + (4.8% X 100%) + (60.8% X 100%) = 75.52%
通过对两轮枪战的详细概率计算,我们发现枪法最差的丙存活的几率最大,枪法较好的甲和乙的存活几率却远低于丙的存活几率。
如有不同见解,欢迎留言讨论~~~