[每日一题]132:括号的最大嵌套深度


题目描述

如果字符串满足以下条件之一,则可以称之为 有效括号字符串(valid parentheses string,可以简写为 VPS):

  • 字符串是一个空字符串 “”,或者是一个不为 “(” 或 “)” 的单字符。
  • 字符串可以写为 AB(A 与 B 字符串连接),其中 A 和 B 都是 有效括号字符串 。
  • 字符串可以写为 (A),其中 A 是一个 有效括号字符串 。

类似地,可以定义任何有效括号字符串 S 的 嵌套深度 depth(S):

  • depth("") = 0
  • depth© = 0,其中 C 是单个字符的字符串,且该字符不是 “(” 或者 “)”
  • depth(A + B) = max(depth(A), depth(B)),其中 A 和 B 都是 有效括号字符串
  • depth("(" + A + “)”) = 1 + depth(A),其中 A 是一个 有效括号字符串

例如:""、"()()"、"()(()())" 都是 有效括号字符串(嵌套深度分别为 0、1、2),而 “)(” 、"(()" 都不是 有效括号字符串 。

给你一个 有效括号字符串 s,返回该字符串的 s 嵌套深度 。

示例 1:

输入:s = "(1+(2*3)+((8)/4))+1"
输出:3
解释:数字 8 在嵌套的 3 层括号中。

示例 2:

输入:s = "(1)+((2))+(((3)))"
输出:3

示例 3:

输入:s = "1+(2*3)/(2-1)"
输出:1

示例 4:

输入:s = "1"
输出:0

提示:

  • 1 <= s.length <= 100
  • s 由数字 0-9 和字符 ‘+’、’-’、’*’、’/’、’(’、’)’ 组成
  • 题目数据保证括号表达式 s 是 有效的括号表达式

题解思路

方法:遍历

对于括号计算类题目,我们往往可以用栈来思考。

遍历字符串 s,如果遇到了一个左括号,那么就将其入栈;如果遇到了一个右括号,那么就弹出栈顶的左括号,与该右括号匹配。这一过程中的栈的大小的最大值,即为 s 的嵌套深度。

代码实现时,由于我们只需要考虑栈的大小,我们可以用一个变量 size 表示栈的大小,当遇到左括号时就将其加一,遇到右括号时就将其减一,从而表示栈中元素的变化。这一过程中 size 的最大值即为 s 的嵌套深度。

代码如下:

class Solution {
public:
    int maxDepth(string s) {
        int res = 0, size = 0;
        for (int i = 0; i < s.size(); ++i) {
            if (s[i] == '(') {
                ++size;
                res = max(res, size);
            }
            else if (s[i] == ')') {
                --size;
            }
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值