题目描述
如果字符串满足以下条件之一,则可以称之为 有效括号字符串(valid parentheses string,可以简写为 VPS):
- 字符串是一个空字符串 “”,或者是一个不为 “(” 或 “)” 的单字符。
- 字符串可以写为 AB(A 与 B 字符串连接),其中 A 和 B 都是 有效括号字符串 。
- 字符串可以写为 (A),其中 A 是一个 有效括号字符串 。
类似地,可以定义任何有效括号字符串 S 的 嵌套深度 depth(S):
- depth("") = 0
- depth© = 0,其中 C 是单个字符的字符串,且该字符不是 “(” 或者 “)”
- depth(A + B) = max(depth(A), depth(B)),其中 A 和 B 都是 有效括号字符串
- depth("(" + A + “)”) = 1 + depth(A),其中 A 是一个 有效括号字符串
例如:""、"()()"、"()(()())" 都是 有效括号字符串(嵌套深度分别为 0、1、2),而 “)(” 、"(()" 都不是 有效括号字符串 。
给你一个 有效括号字符串 s,返回该字符串的 s 嵌套深度 。
示例 1:
输入:s = "(1+(2*3)+((8)/4))+1"
输出:3
解释:数字 8 在嵌套的 3 层括号中。
示例 2:
输入:s = "(1)+((2))+(((3)))"
输出:3
示例 3:
输入:s = "1+(2*3)/(2-1)"
输出:1
示例 4:
输入:s = "1"
输出:0
提示:
- 1 <= s.length <= 100
- s 由数字 0-9 和字符 ‘+’、’-’、’*’、’/’、’(’、’)’ 组成
- 题目数据保证括号表达式 s 是 有效的括号表达式
题解思路
方法:遍历
对于括号计算类题目,我们往往可以用栈来思考。
遍历字符串 s,如果遇到了一个左括号,那么就将其入栈;如果遇到了一个右括号,那么就弹出栈顶的左括号,与该右括号匹配。这一过程中的栈的大小的最大值,即为 s 的嵌套深度。
代码实现时,由于我们只需要考虑栈的大小,我们可以用一个变量 size 表示栈的大小,当遇到左括号时就将其加一,遇到右括号时就将其减一,从而表示栈中元素的变化。这一过程中 size 的最大值即为 s 的嵌套深度。
代码如下:
class Solution {
public:
int maxDepth(string s) {
int res = 0, size = 0;
for (int i = 0; i < s.size(); ++i) {
if (s[i] == '(') {
++size;
res = max(res, size);
}
else if (s[i] == ')') {
--size;
}
}
return res;
}
};