文章目录
题目描述
复数 可以用字符串表示,遵循 “实部+虚部i” 的形式,并满足下述条件:
- 实部 是一个整数,取值范围是 [-100, 100]
- 虚部 也是一个整数,取值范围是 [-100, 100]
- i2 == -1
给你两个字符串表示的复数 num1 和 num2 ,请你遵循复数表示形式,返回表示它们乘积的字符串。
示例 1:
输入:num1 = "1+1i", num2 = "1+1i"
输出:"0+2i"
解释:(1 + i) * (1 + i) = 1 + i2 + 2 * i = 2i ,你需要将它转换为 0+2i 的形式。
示例 2:
输入:num1 = "1+-1i", num2 = "1+-1i"
输出:"0+-2i"
解释:(1 - i) * (1 - i) = 1 + i2 - 2 * i = -2i ,你需要将它转换为 0+-2i 的形式。
提示:
- num1 和 num2 都是有效的复数表示。
题解思路
方法一:模拟
复数可以写成a+bi 的形式,其中 a,b∈R,a 是实部,b 是虚部,i 是虚数单位,i2 = −1。
对于给定的两个复数 num1 和 num2 ,首先分别得到两个复数的实部和虚部,然后计算两个复数的乘法。用 real1 和 imag1 分别表示 num1 的实部和虚部,用 real2 和 imag2 分别表示 num2 的实部和虚部,则两个复数的乘法计算如下:
(real1 + imag1 ×i)×(real2 + imag2 ×i)
= (real1*real2 - imag1*imag2) + (real1*imag2 + imag1*real2) * i
得到两个复数的乘积之后,将乘积转换成复数格式的字符串并返回。
代码如下:
class Solution {
public:
string complexNumberMultiply(string num1, string num2) {
int pos1 = num1.find('+'), pos2 = num2.find('+');
int first = stoi(num1.substr(0, pos1)), second = stoi(num1.substr(pos1 + 1, num1.size() - pos1));
int third = stoi(num2.substr(0, pos2)), fourth = stoi(num2.substr(pos2 + 1, num2.size() - pos2));
return to_string(first*third - second*fourth) + '+' + to_string(first*fourth + second*third) + 'i';
}
};