给你一个整数数组 nums 。nums 中,子数组的 范围 是子数组中最大元素和最小元素的差值。
返回 nums 中 所有 子数组范围的 和 。
子数组是数组中一个连续 非空 的元素序列。
示例 1:
输入:nums = [1,2,3]
输出:4
解释:nums 的 6 个子数组如下所示:
[1],范围 = 最大 - 最小 = 1 - 1 = 0
[2],范围 = 2 - 2 = 0
[3],范围 = 3 - 3 = 0
[1,2],范围 = 2 - 1 = 1
[2,3],范围 = 3 - 2 = 1
[1,2,3],范围 = 3 - 1 = 2
所有范围的和是 0 + 0 + 0 + 1 + 1 + 2 = 4
示例 2:
输入:nums = [1,3,3]
输出:4
解释:nums 的 6 个子数组如下所示:
[1],范围 = 最大 - 最小 = 1 - 1 = 0
[3],范围 = 3 - 3 = 0
[3],范围 = 3 - 3 = 0
[1,3],范围 = 3 - 1 = 2
[3,3],范围 = 3 - 3 = 0
[1,3,3],范围 = 3 - 1 = 2
所有范围的和是 0 + 0 + 0 + 2 + 0 + 2 = 4
示例 3:
输入:nums = [4,-2,-3,4,1]
输出:59
解释:nums 中所有子数组范围的和是 59
提示:
- 1 <= nums.length <= 1000
- -109 <= nums[i] <= 109
题解思路
方法一:遍历子数组
为了方便计算子数组的最大值与最小值,我们首先枚举子数组的左边界 i,然后枚举子数组的右边界 j,且 i≤j。在枚举 j 的过程中我们可以迭代地计算子数组 [i,j] 的最小值 minVal 与最大值 maxVal,然后将范围值 maxVal−minVal 加到总范围和。
代码如下:
class Solution {
public:
long long subArrayRanges(vector<int>& nums) {
int n = nums.size();
long long res = 0;
for (int i = 0; i < n; ++i) {
int minVal = INT_MAX, maxVal = INT_MIN;
for (int j = i; j < n; ++j) {
minVal = min(minVal, nums[j]);
maxVal = max(maxVal, nums[j]);
res += maxVal - minVal;
}
}
return res;
}
};
复杂度分析
- 时间复杂度:O(n2),其中 n 为数组的大小。两层循环需要 O(n2)。
- 空间复杂度:O(1)。