介绍部分:
1. 对于做深度学习方面工作的人来说,在GPU上运行程序,可以大大加快运行速度。
2. CUDA:(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员现在可以使用C语言来为CUDA™架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序可以在支持CUDA™的处理器上以超高性能运行。
3. CuDNN:是专门针对Deep Learning框架设计的一套GPU计算加速方案,目前支持的DL库包括Caffe,ConvNet, Torch7等。
4. 本文主要搭建环境为:Ubuntu16.04+CUDA9.0+CuDNN7.1+tensorflow-gpu1.8
继续安装请看下一篇:准备工作